
Mapping Kernel Objects to Enable Systematic
Integrity Checking

Martim Carbone
Georgia Institute of Technology

Atlanta, GA, USA
mcarbone@cc.gatech.edu

Weidong Cui
Microsoft Research
Redmond, WA, USA

wdcui@microsoft.com

Long Lu
Georgia Institute of Technology

Atlanta, GA, USA
long@cc.gatech.edu

Wenke Lee
Georgia Institute of Technology

Atlanta, GA, USA
wenke@cc.gatech.edu

Marcus Peinado
Microsoft Research
Redmond, WA, USA

marcuspe@microsoft.com

Xuxian Jiang
North Carolina State University

Raleigh, NC, USA

jiang@cs.ncsu.edu

ABSTRACT

Dynamic kernel data have become an attractive target for kernel-
mode malware. However, previous solutions for checking kernel
integrity either limit themselves to code and static data or can only
inspect a fraction of dynamic data, resulting in limited protection.
Our study shows that previous solutions may reach only 28% of the
dynamic kernel data and thus may fail to identify function pointers
manipulated by many kernel-mode malware.

To enable systematic kernel integrity checking, in this paper we
present KOP, a system that can map dynamic kernel data with nearly
complete coverage and nearly perfect accuracy. Unlike previous
approaches, which ignore generic pointers, unions and dynamic ar-
rays when locating dynamic kernel objects, KOP (1) applies inter-
procedural points-to analysis to compute all possible types for generic
pointers (e.g., void*), (2) uses a pattern matching algorithm to re-
solve type ambiguities (e.g., unions), and (3) recognizes dynamic
arrays by leveraging knowledge of kernel memory pool boundaries.
We implemented a prototype of KOP and evaluated it on a Win-
dows Vista SP1 system loaded with 63 kernel drivers. KOP was
able to accurately map 99% of all the dynamic kernel data.

To demonstrate KOP’s power, we developed two tools based on
it to systematically identify malicious function pointers and un-
cover hidden kernel objects. Our tools correctly identified all mali-
cious function pointers and all hidden objects from nine real-world
kernel-mode malware samples as well as one created by ourselves,
with no false alarms.

Categories and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protection; F.3.2
[LOGICS AND MEANINGS OF PROGRAMS]: Semantics of
Programming Languages—Program analysis

General Terms

Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

Keywords

Kernel Integrity, Malware, Introspection, Pointer Analysis, Mem-
ory Analysis

1. INTRODUCTION
Modern operating systems are vulnerable to various types of at-

tacks. In particular, kernel-mode malware represents a significant
threat because of its ability to compromise the security of the ker-
nel and, hence, the entire software stack. For example, kernel-
mode malware can tamper with kernel code and data to hide it-
self and collect useful information from certain system events (e.g.,
keystrokes). To mitigate this security threat, the integrity of the
complete kernel code and data needs to be verified.

It is relatively easy to check the integrity of kernel code and
static data in a running system given their read-only nature and
well-defined locations in memory. However, it is much harder
to check the integrity of dynamic data due to their unpredictable
memory locations and volatile nature. Not surprisingly, dynamic
data have become one of the most attractive targets for kernel-mode
malware [11, 12, 25].

Previous solutions for checking kernel integrity either limit them-
selves to kernel code and static data (e.g., system call tables) [13,
20, 24, 29], or can reach only a fraction of the dynamic kernel
data [3, 22], resulting in limited security. Our study shows that
previous systems [3,22] may miss up to 72% of the dynamic kernel
data and thus may fail to identify function pointers manipulated by
many kernel-mode malware. It is straightforward for an attacker,
for instance, to implement new kernel-mode malware that tampers
only with function pointers in objects that cannot be reached by
these systems. Clearly, a complete and accurate understanding of
all kernel memory is critical for checking the kernel’s integrity.

Locating dynamic kernel objects in memory and identifying their
types is the first and perhaps most difficult step towards enabling
systematic integrity checks of dynamic kernel data. We call this
process mapping. To locate a dynamic object, a reference to it must
be found, usually in the form of a pointer. This pointer could, of
course, be located in another dynamic object, turning this into a
recursive problem. Mapping all the dynamic objects involves per-
forming a complete traversal of the memory, starting from a set of
globally well-defined objects and following each pointer reference
to the next object, until all have been covered.

This basic idea was applied in previous security systems [3, 22].
However, these systems suffer from three major limitations. First,
they cannot follow generic pointers (e.g., void*) because they only

leverage type definitions and thus cannot know the target types of
generic pointers. Second, these systems cannot follow pointers
defined inside unions since they cannot tell which union subtype
should be considered. Third, they cannot recognize dynamic arrays
and thus the objects inside them. Since generic pointers, unions,
and dynamic arrays are programming paradigms commonly used in
OS kernels, ignoring them may result in a very incomplete memory
traversal as we observed in our study. Furthermore, previous sys-
tems require significant manual annotations in the source code. For
example, in [3,22], all linked list constructs needed to be annotated
so that the corresponding objects can be correctly identified by the
traversal. We have observed more than 1,500 doubly linked list
types in the Windows Vista SP1 kernel. This large number makes
an annotation process error-prone and time-consuming.

In this paper, we address the problem of automatically mapping
all kernel objects to enable systematic kernel integrity checking.
We present KOP (Kernel Object Pinpointer), a system that can map
kernel data objects in a memory snapshot with nearly complete cov-
erage and nearly perfect accuracy. Unlike previous systems, KOP is
designed to address the challenges in pointer-based memory traver-
sal. KOP’s system architecture is shown in Figure 1. KOP first
performs static analysis on the kernel’s source code to construct an
extended type graph. This extended type graph has not only type
definitions and global variables but also all candidate target types
for generic pointers. Given a memory snapshot, KOP then per-
forms a memory analysis based on the extended type graph. KOP
resolves type ambiguities caused by unions or generic pointers with
multiple candidate target types and identifies dynamic arrays. The
output is an object graph that contains all the identified kernel ob-
jects and their pointers to other objects. Systematic kernel integrity

checking can be performed on this object graph.
KOP’s ability to map kernel objects with high coverage and ac-

curacy enables a variety of systematic kernel integrity checks. To
concretely demonstrate the power of KOP, we have developed two
tools based on it, namely, SFPD (for Subverted Function Pointer
Detector) and GHOST (for General Hidden Object Scanning Tool).
SFPD can systematically identify function pointers manipulated
by kernel-mode malware. Compared with previous work such as
SBCFI [22], SFPD’s key advantages are: (1) it can check almost all
function pointers due to the high coverage and accuracy of KOP’s
memory traversal, and (2) it can verify implicit function pointers—
any function pointer field defined inside a union or not defined as
a function pointer type (e.g., unsigned int) but sometimes used as
a function pointer. GHOST is a tool that can systematically un-
cover hidden kernel objects. Unlike previous tools [21, 28] that
rely on specific knowledge of a particular data type (e.g., process
constructs), GHOST can work with arbitrary kinds of system ob-
jects without having to know how exactly they are organized in
memory. Instead, GHOST can derive a view of certain system at-
tributes (such as the list of active processes) from the kernel objects
identified by KOP and compare it with information collected from
an internal program. Mismatches in this comparison reveal hidden
kernel objects.

We have implemented a prototype system of KOP using the Phoenix
compiler framework [16] and evaluated it on a Windows system.
Our system runs the Windows Vista SP1 kernel along with 63 drivers.
Our experiments show that KOP’s traversal reached 99% of all the
dynamic kernel data. By verifying 94% of the mapped kernel data
whose types were manually determined, we found that KOP cor-
rectly identified the types of 99%. We were not able to verify the
other 6% simply because of the large number of different alloca-
tion contexts which we would have had to analyze manually. We
also implemented a prototype system of SFPD and GHOST based

Static

Analysis

Extended

Type Graph

Source

Code

Memory

Snapshot

Memory

Analysis

Object

Graph

Kernel Integrity

Checking

Figure 1: The KOP system architecture.

on KOP. We tested SFPD with eight real-world kernel-mode rootk-
its. Our experiments show that SFPD identified all malicious func-
tion pointers, including implicit ones. We tested GHOST with two
real-world kernel-mode rootkits and showed that it uncovered all
the objects hidden by them. To compare KOP and its applications
with previous approaches, we also conducted memory traversals in
a way similar to the one described in [3, 22]. We found that pre-
vious approaches can only reach up to 28% of the dynamic kernel
data and thus miss malicious function pointers for six of the eight
rootkits we tested. A complete memory traversal with KOP cur-
rently takes eight minutes. This allows KOP to be used for a vari-
ety of offline applications. For instance, one can build SFPD-like
tools based on KOP to analyze a memory snapshot taken from an
infected machine for forensic analysis, or to profile memory foot-
prints of kernel-mode malware for malware analysis.

In summary, we make the following contributions:

• We designed a points-to analysis algorithm to perform an
inter-procedural, field-sensitive, and context-sensitive anal-
ysis of a large C/C++ program such as an OS kernel (Sec-
tion 3.1).

• We designed an algorithm to infer candidate types for generic
pointers based on a points-to graph (Section 3.2).

• We designed a set of techniques to resolve type ambiguities
in memory traversal (Section 4.1).

• We designed an approach to recognize dynamic arrays and
their sizes in a memory snapshot (Section 4.2).

• We developed the first tool that can identify implicit function
pointers manipulated by kernel-mode malware (Section 5).

• We developed a prototype system of KOP that can map dy-
namic kernel data in a Windows system loaded with a large
number of drivers with nearly complete coverage and nearly
perfect accuracy (Section 6).

2. OVERVIEW
The goal of KOP is to completely and accurately map all kernel

objects in a memory snapshot in order to enable systematic kernel
integrity checking. In KOP, we refer to a live instance of a data type
(or, a data structure) as an object. KOP has two main components:
a static analysis component and a memory analysis component.

1: SLIST_ENTRY WrapDataListHead;

2: typedef struct _WRAP_DATA {

3: SLIST_ENTRY List;

4: int32 Type;

5: void* PData;

6: } WRAP_DATA;

7: typedef struct _BIN_DATA {

8: int32 BinLength;

9: char* BinData;

10: } BIN_DATA;

11: typedef struct _TXT_DATA {

12: char* TxtData;

13: } TXT_DATA;

14: void InsertSList

15: (SLIST_ENTRY *Head, SLIST_ENTRY *Entry)

16: {

17: Entry->Flink = Head->Flink;

18: Head->Flink = Entry;

19: }

20: void InsertWrapList (int32 type, void *data)

21: {

22: WRAP_DATA *WrapData = AllocateWrapData();

23: WrapData->Type = type;

24: WrapData->PData = data;

25: InsertSList(&WrapDataListHead, &WrapData->List);

26: }

27: void InsertTxtData(TXT_DATA *txt_data)

28: {

29: InsertWrapList(0, txt_data);

30: }

31: void InsertBinData(BIN_DATA *bin_data)

32: {

33: InsertWrapList(1, bin_data);

34: }

Figure 2: The source code for the running example.

KOP first performs static analysis on the kernel source code.
It starts with an inter-procedural, inclusion-based points-to anal-
ysis [1] to derive a points-to graph. This is a directed graph whose
nodes are pointers in the program and edges represent inclusion re-
lationships. In other words, an edge from pointer x to pointer y

means that any object pointers that can be derived from y are also
derivable from x. Additionally, the points-to graph is maintained as
a pre-transitive graph, i.e., the graph is not transitively closed [10].

Based on the pre-transitive points-to graph, KOP then infers can-
didate target types for generic pointers. Generic pointers are those
whose target types cannot be extracted from their definitions. The
term includes void* pointers as well as pointers defined inside linked
list-related structures that are nested inside objects. The final out-
put of KOP’s static analysis component is an extended type graph.
This is a directed graph where each node is either a data type or a
global variable, and each edge has a label (m, n). This means that
the pointer field at offset m in the source node points to the target
node at offset n. We call this an extended type graph because it has
edges corresponding to generic pointer fields which do not exist in
the basic type graph derived from only type definitions.

Given a memory snapshot, KOP performs memory analysis by
using the extended type graph to traverse the kernel memory. The
output of the memory analysis component is an object graph whose
nodes are instances of objects in the memory snapshot and edges
are the pointers connecting these objects. Kernel data integrity
checks can then be performed based on this object graph.

To help illustrate KOP, we will use the source code in Figure 2 as
a running example. The code snippet shows the data structures and

_InsertWrapList: #21

_type, _data = ENTERFUNCTION #21

t282, {*CallTag} = CALL* &_AllocateWrapData #22

_WrapData = ASSIGN t282 #22

t283 = ADD _WrapData, 4 #23

[t283]* = ASSIGN _type #23

t284 = ADD _WrapData, 8 #24

[t284]* = ASSIGN _data #24

t285 = ADD _WrapData, 0 #25

t286 = CONVERT t285 #25

CALL* &_InsertSList, &_WrapDataListHead, t286 #25

EXITFUNCTION #26

Figure 3: InsertWrapList() in medium-level intermediate rep-

resentation (MIR).

functions for inserting a TXT_DATA object or a BIN_DATA object
into a singly-linked list (WrapDataListHead). The list stores a group
of WRAP_DATA objects.

3. STATIC ANALYSIS
KOP’s static analysis component takes the kernel’s source code

as input, and outputs its extended type graph. To do so, we compute
three sets of information: (1) object type definitions, (2) declared
types and relative addresses of global variables, and (3) candidate
target types for generic pointers. Since it is straightforward to re-
trieve the first two sets of information from a compiler, we will
focus on how the candidate target types for generic pointers are de-
termined. We first describe how we perform an inter-procedural
points-to analysis [1] to construct a points-to graph. We then de-
scribe how we derive target types for generic pointers based on the
points-to graph and the type definitions of local and global vari-
ables. Our static analysis is based on the medium-level interme-
diate representation (MIR) used by the Phoenix compiler frame-
work [16]. In Figure 3, we show the MIR for the function Inser-

tWrapList() of our running example.

3.1 Points-To Analysis
Our inter-procedural flow-insensitive (i.e., ignoring the control

flow within a procedure) points-to analysis is due to Andersen [1].
It computes the set of logical objects that each pointer may point to
(referred to as the points-to set for that pointer). The logical objects
include local and global variables as well as dynamically allocated
objects. Since our goal is to find candidate target types for generic
pointers, our points-to analysis must be field-sensitive (i.e., distin-
guishing the fields inside an object). Furthermore, to achieve good
precision, we chose to perform context-sensitive analysis (i.e., dis-
tinguishing the calling contexts). The reason is that generic func-
tions such as InsertSList from our running example are widely used
in OS kernels, and without context-sensitivity, the analysis of such
functions would result in very general points-to sets for their ar-
guments. Basically, all list heads and entries that are ever passed
to such a generic function would point to each other. Finally, our
points-to analysis must scale to a large codebase such as an OS
kernel.

Points-to analysis for C programs has been widely studied in
the programming languages field [2, 6, 9, 10, 19, 30, 31]. Unfortu-
nately, none of the previous algorithms meets our requirements. All
the previous solutions chose to sacrifice precision for performance
since the points-to analysis used inside compilers is expected to
finish within minutes. When designing KOP, we decided to revise

the algorithm proposed by Heintze and Tardieu in [10] to achieve

field-sensitivity and context-sensitivity. Note that the original algo-
rithm is context-insensitive and field-based. In field-based analy-
sis, all instances of a field are treated as one variable, whereas in

Rule Original KOP

Assign x = y =⇒ 〈x, y〉 (x = y + n, op) =⇒ 〈x, y, n, op〉

Trans 〈x, y〉, 〈y, z〉 =⇒ 〈x, z〉
〈x, y, n1, ops1〉, 〈y, z, n2, ops2〉 =⇒ 〈x, z, n1 + n2, ops2 + ops1〉

where ops1 + ops2 is a valid call path.

Star-1 〈x,&z〉, ∗x = y =⇒ 〈z, y〉
〈x, &z, n, ops〉, (∗x = y, op) =⇒ 〈z.n, y, 0, op + rev(ops)〉

where op + rev(ops) is a valid call path.

Star-2 〈y,&z〉, x = ∗y =⇒ 〈x, z〉
〈y, &z, n, ops〉, (x = ∗y, op) =⇒ 〈x, z.n, 0, ops + op〉

where ops + op is a valid call path.

Table 1: Deduction rules used by the original algorithm [10] and KOP.

field-sensitive analysis, each instance is treated separately. Conse-
quently, field-sensitive analysis is more precise.

Next we describe in detail how we achieve field-sensitivity and
context-sensitivity in our points-to analysis. We will focus on the
changes introduced to Heintze and Tardieu’s algorithm [10].

By using temporary variables, Heintze and Tardieu transform
pointer assignments into four canonical forms: x = y, x = &y,
∗x = y, and x = ∗y. To handle pointer offsets, we generalize the
first two assignment forms to x = y + n and x = &y + n where n

is a pointer offset. To achieve context-sensitivity, we associate each
assignment with a variable op that specifies the call or return op-
eration involved in the assignment. op is null when the assignment
occurs inside a single function.

In [10], given the four canonical assignment forms, an edge in
the points-to graph is a pair 〈src, dst〉. Four deduction rules are
used to compute the points-to graph (shown in the left portion of
Table 1). To consider pointer offsets and calling context changes,
we add a label 〈n, ops〉 to each edge. We denote a labeled edge
from src to dst by 〈src, dst, n, ops〉. For example, given the
pointer assignment _Entry = t286 due to the function call at line
25 of Figure 3, the corresponding edge will be 〈_Entry, t286, 0,

call@file : 25〉.
Given the edge labels, we change the deduction rules accord-

ingly (shown in the right portion of Table 1). The changes related to
field-sensitivity are straightforward. In the Assign rule, the pointer
offset is simply included in the edge’s four-tuple. In the Trans

rule, the pointer offsets are added up. In the Star rules, we cre-
ate a new node z.n to represent an instance of the pointer field at
offset n in logical object z to achieve field-sensitivity. In our de-
duction rules, whenever we create a new edge, we also check if the
sequence of call/return operations involved is valid under context-
sensitivity. A sequence is valid if it can be instantiated from a valid
call path (i.e., a control flow). We assume there are no recursive
functions (we have not observed any in the Windows source code
we analyzed). So a valid call path has at most a single call at each
call site. Additionally, we do not need to apply any special rules to
global variables since we create a single node for each global vari-
able disregarding the function contexts. This allows information to
flow through global variables between different functions.

To avoid the cost of computing the full transitive closure, Heintze
and Tardieu maintain a pre-transitive graph and compute the points-
to set on-demand. We adapt their algorithm to take our edge la-
bels into account. Compared with the original algorithm, our pre-
transitive graph algorithm has two key differences. First, we en-
force context-sensitivity by checking if a sequence of call/return

operations is valid. Second, whenever a cycle is found, the algo-
rithm in [10] merges all the nodes in the cycle. Instead we termi-
nate the path traversal in this case, because our edges carry more
information than just pointer inclusions. The cycle detection in our
pre-transitive graph algorithm and the no-recursive-call policy in
enforcing context-sensitivity ensure that our points-to analysis ter-
minates.

3.2 Inferring Types for Generic Pointers
The output of our points-to analysis is a pre-transitive points-

to graph from which we can derive the candidate target types for
generic pointers. The key idea is to leverage the type definitions
of local and global variables. Before describing our algorithm in
detail, we will use an example to explain the intuition behind it.

List

Type

PData

WRAP_DATA

_WrapData

t284
_data

_bin_data

_txt_data

BinLength

TxtData

BinData

BIN_DATA

TXT_DATA

8 0

0

Figure 4: An example for inferring candidate target types of

generic pointers. In this example, we derive the types for

WRAP_DATA.PData from the assignment *t284 = _data (see the

MIR code in Figure 3). This graph is a mix of the points-to

graph and the extended type graph. It illustrates how we de-

rive edges in the extended type graph based on the points-to

graph. Ellipse nodes and solid arrows are part of the points-to

graph. Rectangular nodes and bold-solid arrows are part of the

final extended type graph. The dashed arrows are derived from

the type definitions of variables.

The basic idea of our algorithm is illustrated in Figure 4. In the
points-to graph of our running example, we have edges from t284

to _WrapData (with pointer offset 8) and from _data to _bin_data and
_txt_data (with pointer offset 0). In addition, based on the type def-
initions, we know that _WrapData points to WRAP_DATA, _bin_data

points to BIN_DATA and _txt_data points to TXT_DATA. Then, given
the assignment *t284 = _data, we can infer that WRAP_DATA+8,
which is WRAP_DATA.PData, may point to either BIN_DATA or
TXT_DATA. The key difference here from classic points-to analysis
is that, although a pointer like _WrapData may not point to any log-

WrapDataListHead List

Type

PData

WRAP_DATA
BinLength

TxtData

BinData

BIN_DATA

TXT_DATA

Figure 5: The extended type graph for the running example.

ical object, we leverage its type definition to derive the target types

for WRAP_DATA.PData. Moreover, with the pointer offsets from the
points-to graph, we naturally identify that WRAP_DATA.List does
not just point to an SLIST_ENTRY object but actually a WRAP_DATA

object. With this, KOP avoids the need for manual annotations in
the code for types such as SLIST_ENTRY. The extended type graph
for our running example is shown in Figure 5. Note that WrapDataL-

istHead is a global variable and the other nodes are data types.
More specifically, for each assignment in the form ∗x = y, we

first search for all the reachable nodes in the pre-transitive pointer
graph for x and y, separately. We refer to them as TargetSet(x)
and TargetSet(y). Then for each node a in TargetSet(x) and
each node b in TargetSet(y), we check if there is a valid call path
from a to b. If there is one, we derive a candidate target type for the
corresponding pointer field in a’s data type. Similarly, we derive
candidate types from assignments in the form x = ∗y. The intu-
ition is that, when y is a generic pointer such as void*, it will be cast
back to its actual type before the program accesses the data pointed
to by it. Specifically, for each assignment, we first search for the
nodes that can reach x, referred to as SourceSet(x). Then for
each node a in SourceSet(x) and each node b in TargetSet(y),
we check if there is a valid call path from a to b. If so, we derive a
candidate type for the corresponding pointer field in a’s data type.

A problem inherent to flow-insensitive points-to analysis is its
imprecision. To mitigate this problem, we introduce a constraint
when deriving candidate types for generic pointers in linked list
constructs. For example, a pointer field in SLIST_ENTRY must
point to an SLIST_ENTRY structure. This kind of constraint re-
duces the number of incorrect candidate target types and thus re-
duces the possibility of errors in the memory analysis. Such con-
straints do not decrease KOP’s coverage because all valid candidate
target types are expected to meet this constraint.

4. MEMORY ANALYSIS
KOP’s memory analysis component maps kernel data objects

and derives the object graph for a given memory snapshot. It does
so by using the extended type graph derived earlier to traverse the
kernel memory. We use our running example to explain the basic
idea behind our memory traversal algorithm and the challenges we
faced.

Starting at global variable WrapDataListHead, KOP first reaches
an object of type WRAP_DATA referenced by it. KOP then follows
each pointer field defined inside this object. By following the field
WRAP_DATA.List (a linked list structure), KOP reaches another ob-
ject of type WRAP_DATA, and continues by following each pointer
field inside it. This technique has its roots in trace-based garbage
collection, where it is used to identify all referenced memory blocks
in a program’s heap.

A challenge arises when trying to follow the pointer field WRAP_

DATA.PData. This field is a generic pointer which, according to

the extended type graph, can either point to a BIN_DATA object
or a TXT_DATA object. KOP must determine the type of the ob-
ject referenced by WRAP_DATA.PData in memory. Additionally, the
BIN_DATA.BinData and TXT_DATA.TxtData could be pointers to dy-
namic arrays. Finally, KOP needs to tolerate identification errors to
a certain degree.

In summary, to correctly identify kernel objects, KOP faces three
challenges: resolving type ambiguities, recognizing dynamic ar-
rays, and controlling identification errors. In the rest of this section,
we describe in detail how we address each of these challenges. We
use examples from the Windows operating system but our tech-
niques are applicable to other operating systems (e.g., Linux) since
they rely on common implementation paradigms used in modern
operating systems.

4.1 Resolving Type Ambiguities
Type ambiguities come from two sources: unions and generic

pointers that have multiple candidate target types. We will refer to
the range of possible choices in both cases as candidate types or
candidates. KOP is the first system that can resolve type ambigui-
ties in memory traversal.

KOP considers two constraints when determining the correct can-
didate type. The first is a size constraint. Specifically, operating
system kernels (e.g., Windows) store dynamic kernel data in a set
of memory allocation units called pool blocks. Each pool block
is created by a call to a memory allocation function (e.g., ExAl-

locatePool() in Windows). Each kernel object must lie completely
within a single pool block. We consider this as a hard constraint.
When resolving type ambiguities, KOP rejects any candidate that
violates the size constraint.

The second constraint is based on the observation that the data
stored by certain data types must have specific properties. Cur-
rently, we apply this constraint only to pointer fields. With certain
exceptions, pointer fields in kernel objects are either null or assume
values in the kernel virtual address range (e.g., [0x80000000,
0xFFFFFFFF] for 32-bit Windows). Drivers that directly access
user mode memory, for instance, do not meet this condition. Thus,
we treat it as a soft constraint. We accept candidates that violate
this constraint as long as the number of violating pointers is suf-
ficiently small. More precisely, given several candidate types, we
compute for each candidate the fraction of pointer fields that vio-
late the constraint and choose the one with the lowest fraction. We
discard the candidate if the fraction of invalid pointer values for it
is too high (e.g., >10%).

These two constraints are not only evaluated on the candidates
themselves, but also recursively for their “child” objects (i.e., the
objects pointed by the candidates) up to a certain depth level (e.g.,
three). By doing so, we improve the accuracy of type ambiguity
resolution since we have more data to rely upon when making the
decision.

4.2 Recognizing Dynamic Arrays
Dynamic arrays are widely used in OS kernels and drivers. KOP

is the first system with the capability to automatically recognize
dynamic arrays in memory traversal. The key idea is to leverage
the kernel memory pool boundaries, i.e., a dynamic array must fit
into a single pool block. Moreover, we note that a dynamic array
is usually allocated in two possible ways: it may take up a whole
pool block, or it may extend an object whose last field is defined
as an array of size 0 or 1. Based on these two observations, KOP
checks each allocated pool block to recognize dynamic arrays after
the object traversal (without dynamic arrays) is completed.

If a single object is identified at the start of a pool block, KOP

analyzes the block further to determine if it contains a dynamic
array of the first kind. The intuition is that arrays are typically
accessed via a pointer to their first element. KOP then tests if the
array candidate meets a new size constraint: the size of a pool block
must be a multiple of the size of the first object plus some number
between 0 and A− 1, where A is the pool block alignment. This is
a hard constraint. Finally, KOP checks the pointer value constraint
for each array element. KOP accepts the dynamic array candidate
if a sufficiently large fraction of array elements (e.g., >80%) have a
low fraction of invalid pointer values.

KOP checks a pool block for a dynamic array of the second kind
if there is an empty space (i.e., no objects were found) trailing an
object and the object’s last element is an array of size 0 or 1. For
such objects, KOP checks the size and pointer value constraints as
described above.

After identifying dynamic arrays, KOP uses them as roots and
reruns the traversal algorithm. This process is repeated until no
more dynamic arrays can be found.

4.3 Controlling Object Identification Errors
During the memory traversal, KOP may incorrectly identify an

object for three main reasons: (1) choosing the wrong candidate
when resolving type ambiguities, (2) mistaking a dynamic array,
and (3) program bugs (e.g., dangling pointers). Given the recursive
nature of KOP’s memory traversal, an incorrect object may cause
more errors during the rest of the traversal. Therefore, it is critical
to reduce identification errors and prevent them from propagating.
To do so, we employ the following two techniques.

First, instead of performing a single complete traversal, KOP tra-
verses the kernel memory in multiple rounds. The key idea is to
identify unambiguous kernel objects and use them to constrain the

solution space.. Specifically, KOP performs the memory traver-
sal in three distinct rounds. In the first round, KOP identifies all
the global objects and those objects referenced by global pointers.
These are the roots used in the traversal and are likely to be correct.
In the second round, starting from the objects found in the first
round, KOP traverses the kernel memory but only follows pointer

fields that do not have type ambiguities. We do not infer dynamic
arrays in this round either. This way we avoid the identification er-
rors that may be caused by either resolving type ambiguities or in-
ferring dynamic arrays. In the third round, starting from the objects
found in the previous rounds, KOP traverses the kernel memory and
resolve type ambiguities when necessary. KOP also identifies and
traverses dynamic arrays in this round (after the traversal without
dynamic arrays is finished). Note that, if two objects identified in
the same round conflict with each other, we keep both of them.
Currently, we perform a depth-first traversal in each round.

Second, to limit the damage caused by an earlier identification
error, KOP uses a safe-guard mechanism. Whenever following a
typed pointer during the traversal, KOP first checks if the object
implied by the pointer type meets the constraints used to resolve
type ambiguities (see Section 4.1). This can be treated as a special
case in which only a single candidate is considered. If the object
violates either constraint, KOP discards it and stops that branch of
the traversal.

5. KERNEL INTEGRITY CHECKING
We implemented two integrity checking applications on top of

KOP: function pointer checking and hidden object discovery. We
chose these applications because they address two of the most com-
mon techniques used by kernel-mode malware, especially rootkits.

5.1 Function Pointer Checking
Function pointers are commonly used throughout the kernel to

perform indirect calls. A popular technique used by malware is to
change their values to point to malicious code, an action also known
as hooking. By doing so, malware can hijack the OS control flow
whenever an indirect call of these function pointers occurs. This
allows it to intercept and control certain types of system activity.

A common task in detecting unknown or analyzing known kernel-
mode malware is to identify all the function pointers manipulated
by the malware. The ideal way to do this is to inspect the values of
all function pointers in the kernel and determine if they point to le-
gitimate targets. There are several difficulties with this. First, many
function pointers reside in dynamic kernel objects, and therefore do
not have a fixed location in memory. Second, inside a single object,
not all function pointers can be unequivocally identified. This can
happen in the following two scenarios: (1) a field is not declared
as a function pointer type (e.g., unsigned int) but effectively used
as a function pointer, and (2) a function pointer is defined inside a
union. We refer to these as implicit function pointers and all the
others as explicit function pointers. Thus, the task of complete and
accurate function pointer identification is a challenge in modern
OSes.

To address these problems we built SFPD, the Subverted Func-

tion Pointer Detector. SFPD relies on KOP to perform a systematic
analysis of function pointers in a kernel memory snapshot. Par-
ticularly, it leverages KOP’s nearly complete memory traversal to
identify kernel objects. Due to KOP’s greater coverage of the ker-
nel memory, SFPD is able to verify the function pointers of a much
larger set of objects than previous approaches such as SBCFI [22].
SFPD also leverages KOP’s points-to analysis to recognize implicit
function pointers. SFPD is the first system that can identify mali-
cious implicit function pointers in kernel memory.

SFPD is given a white list of trusted modules. This includes
the kernel and trusted drivers. Given a memory snapshot, SFPD
first checks if the code of these modules was modified. If so, any
modified parts of the code are marked as untrusted. The rest of
the code is treated as trusted. SFPD then checks every function
pointer in the kernel objects found by KOP based on the following
policy: An explicit function pointer must point to trusted code; an

implicit function pointer must point to either trusted code or a data

object found by KOP; otherwise, the function pointer is marked as

malicious.
This policy is simple but powerful. For example, SFPD can de-

tect any function pointer that targets untrusted code placed in un-
used blocks of memory. At the same time, by leveraging KOP’s
high coverage, it effectively avoids the false alarms that would
otherwise be caused in two cases: (1) Our flow-insensitive points-
to analysis mistakenly identifies data pointers as implicit function
pointers, due to imprecision; and (2) data pointers share the same
offset as a function pointer in a union.

Additionally, we leverage the traversal information generated
by KOP to retrieve the traversal path to objects whose function
pointers were found to be malicious. Such information is impor-
tant because this path often reveals the purpose of the function
pointer. For instance, simply knowing about a function pointer in
an EX_CALLBACK_ROUTINE_BLOCK object [4] does not tell us
what it is for. We will, however, know that it is used to intercept
process creation events when SFPD shows that it is referenced from
a global pointer array in PspCreateProcessNotifyRoutine [4, 27].

5.2 Hidden Object Discovery
A technique often employed by kernel-mode malware is to hide

itself by either hijacking control flow or directly manipulating ker-

nel objects. For instance, to hide a process in the Task Manager,
an attacker can either hijack the system call to NtQuerySystemInfor-

mation or unlink the corresponding process object from the active
process list. Previous efforts have focused on detecting specific
types of hidden objects by hardcoding expert knowledge of the re-
lated data structures [21,28]. Such approaches are time-consuming,
and require a human expert with deep knowledge of the system to
create the rules.

Given KOP’s ability to map kernel objects, we developed a tool
called General Hidden Object Scanning Tool (GHOST) that can
systematically uncover hidden objects of arbitrary type with little
human effort. Specifically, given an object type, GHOST compares
the list of all the objects of that type found by KOP in a memory
snapshot with the list of objects returned by a program such as Task
Manager. One may need to repeat this comparison multiple times to
avoid false alarms caused by state variations from the time that the
internal program is executed to the time that the memory snapshot
is taken. Currently, GHOST uses the information reported by Task
Manager and WinObj [26] and compares it with the data returned
by KOP to uncover hidden processes and drivers.

Compared with previous approaches, GHOST has two key ad-
vantages. First, the amount of manual effort is small since the deep
knowledge of data structures resides inside KOP. For instance, to
get the list of loaded drivers using KOP, one just needs to know
that a specific pointer in each driver object refers to the driver’s
name. Second, KOP’s exhaustive traversal of all the pointer paths
allows GHOST to identify a hidden kernel object as long as there
exists at least one pointer path to it.

6. IMPLEMENTATION AND EVALUATION
We developed a prototype of KOP on Windows. The static analy-

sis component was built using the Phoenix compiler framework [16].
The runtime component is a standalone program. Both components
were implemented in C# with a total of 16,000 lines of code. KOP
operates in an offline manner on a snapshot of the kernel memory,
captured in Windows as a complete memory dump [15]. KOP re-
lies on the Windows Debugger API [14] to resolve symbols, access
virtual addresses, and extract information about the pool blocks al-
located in the snapshot.

We used the Windows Vista SP1 operating system as our anal-
ysis subject. Its kernel and drivers are mostly written in C, with
parts in C++ and assembly. Our experiments were performed on
a system loaded with 63 kernel drivers shipped with the OS. We
ran this system in a VMware virtual machine with 1GB RAM. In
our prototype, we used the following parameters for the memory
analysis: tolerance of at most 10% for invalid pointer values in an
object, requirement of at least 80% of the dynamic array elements
to meet the pointer constraint, and the use of three levels of child
objects when evaluating the pointer constraint for a candidate.

Several implementation techniques in the Vista kernel and drivers
presented difficulties for KOP. We were able to identify the follow-
ing cases: (1) the lower bits in some pointers are used to store a
reference counter (assuming that the target is 8-byte aligned) (2) in
some cases relative memory offsets are used for object referencing,
and (3) several cases of implicit type polymorphism in C (e.g., a
single object can be used as if it belonged to more than one type).
In developing our prototype, we manually adjusted our implemen-
tation to handle these cases.

We also implemented prototype systems for SFPD and GHOST.
Our SFPD prototype itself has a total of 1,000 lines of C# code,
and our GHOST prototype has 200 lines of C# code. The relatively
small size of our SFPD and GHOST prototypes shows that, given
the infrastructure provided by KOP, it requires only a small amount

of extra effort to implement an integrity checking application. In
the rest of this section, we present the evaluations of KOP, SFPD,
and GHOST.

6.1 KOP
KOP’s main goal is to completely and accurately map the ker-

nel objects in a memory snapshot. Since we can trivially identify
all static kernel objects by mapping global variables, we will only
evaluate KOP’s coverage of dynamic kernel objects. We also eval-
uated KOP’s performance to demonstrate that it can perform its
offline memory analysis in a reasonable amount of time. Before
presenting our experimental results on coverage and performance,
we will first summarize the results of our static analysis.

6.1.1 Static Analysis

We applied KOP’s static analysis to the source code of the Vista
SP1 kernel and the 63 drivers, with a total of 5 million lines of code.
This codebase contains 24423 data types and 9629 global variable
definitions. KOP derived the candidate target types for 3228 void*

pointers, 1560 doubly linked lists, 118 singly linked lists, and 8
triply linked lists (i.e., balanced trees). KOP also identified 3412
implicit function pointers. In our experiments, KOP needed less
than 48 hours to complete its static analysis on a 2.2GHz Quad-
Core AMD Opteron machine with 32GB RAM. Since KOP only
needs to run its static analysis once for an OS kernel and its drivers,
we consider this running time acceptable.

6.1.2 Coverage

We measured KOP’s coverage by the fraction of the total allo-
cated dynamic kernel memory for which KOP was able to identify
the correct object type. Ideally, we would use a ground truth that
specifies the exact object layout in kernel memory. However, ob-
taining such a ground truth is extremely difficult and time-consuming.
For instance, the value of a certain field in an object may implic-
itly determine the existence and layout of other objects in the same
pool block. Thus, we would need to understand the semantics of
each object field to obtain the exact object layout.

Instead, we obtained a ground truth with a slightly coarser granu-
larity. Specifically, we instrumented the kernel to log every pool al-
location and deallocation during runtime, along with the call stack,
address and size.

We manually inspected the source code for each location on the
call stack. This allowed us to identify a call stack location at which
the types of the allocated objects could be readily identified in the
source code. This was often not the stack location at which the
generic allocation function (ExAllocatePool()) was called, but some
other location higher in the call stack. We manually analyzed 367
allocation sites and identified the object types that can be allocated
at each site. This corresponds to 95% of the allocated pool blocks
(94% of the allocated bytes). We were not able to do this for 100%
of the pool blocks simply because of the very large number of dif-
ferent allocation sites for the remaining 5%.

Since our ground truth does not specify the exact object layout,
we do not know the exact number of objects that exist in the pool
blocks. Therefore, we cannot measure KOP’s coverage based on
the fraction of correctly identified objects. Instead, we measured
the coverage based on bytes, since we know the total number of
bytes in allocated pool blocks.

For a byte b inside a pool block that is part of our ground truth,
we say b is correctly mapped if KOP identified a single object
which contains b’s location and, under our ground truth, the ob-
ject type is contained in the pool block. If b is mapped to an object
of incorrect type or more than one type, we say it was incorrectly

Clean-Boot (%) – Total bytes: 42775648 Stress-Test (%) – Total bytes: 50588704

Type CM IM MG UM MOG VC GC CM IM MG UM MOG VC GC

Basic 25.4 0.0 68.9 1.4 4.3 26.9 26.8 26.6 0.0 68.0 1.4 4.0 28.1 28.0

KOP 93.7 0.0 0.6 5.3 0.4 99.3 98.9 93.8 0.0 0.8 5.0 0.4 99.2 98.8

Table 2: Coverage results for the basic traversal and KOP when applied to the clean-boot and stress-test memory snapshots. CM

= Correctly Mapped, IM = Incorrectly Mapped, UM = Unverified Map, MG = Missed in Ground-truth, MOG = Missed Outside

Ground-truth, VC = Verified Coverage and GC = Gross Coverage. The numbers in the table are percentages of the total number of

bytes.

mapped by KOP. Finally, if it was not mapped at all, we say it was
missed under ground-truth. Let CM, IM and MG be the sets of
bytes that are classified as correctly mapped, incorrectly mapped
and missed under ground-truth, respectively. We define verified

coverage as

|CM |

|CM | + |IM | + |MG|
,

where | · | denotes the set size. We chose the allocation sites for
which we computed the ground truth based only on the number of
pool blocks they cover and not based on any properties of KOP.
Therefore, we believe that the verified coverage has the character
of a statistical sample and that it is representative of KOP’s overall
coverage.

To gain further confidence, we compute a second measure of
coverage. Consider any byte b in a pool block that is not in our
ground truth. We say that b is an unverified mapping if KOP identi-
fied some object at its location and missed outside of ground-truth

otherwise. Let UM and MOG denote the respective sets. We define
gross coverage as

|CM | + |UM |

|CM | + |IM | + |MG| + |UM | + |MOG|
.

In our coverage experiments, we compared KOP with a basic

traversal algorithm. Like previous approaches [3, 22], the basic
traversal follows only typed pointers and doubly linked lists with-
out resolving type ambiguities and recognizing dynamic arrays.
The only difference is that our basic traversal algorithm uses the
target types of linked lists automatically derived from KOP’s static
analysis, while previous approaches relied on manual efforts. To
demonstrate KOP’s robustness with different workloads, we tested
it on two different memory snapshots. One was collected right after
the system was booted up, and the other was collected after running
a large number of system and user processes on the system for 15
minutes. We refer to these two memory snapshots as the clean-boot

and stress-test snapshot.
The experimental results for the coverage of KOP and the ba-

sic traversal algorithm are shown in Table 2. The total size of the
dynamic kernel data is 42.7MB in the clean-boot memory snap-
shot and 50.6MB in the stress-test snapshot. In both snapshots,
KOP’s verified coverage and gross coverage are 99%, whereas for
the basic traversal it is only 28%. Since our ground truth covers
94% of the dynamic kernel data, the gross coverage is very close
to the verified coverage, as shown in Table 2. We manually inves-
tigated some of the cases where KOP either identified the objects
incorrectly or missed them completely. We found that they were
due to three reasons: KOP incorrectly resolving type ambiguities
or recognizing dynamic arrays, dangling pointers and unorthodox
Windows kernel implementation techniques that we were not able
to identify. In Section 8, we will discuss future research directions
that can help mitigate these errors.

6.1.3 Performance

We measured KOP’s running time when analyzing twelve dis-
tinct memory snapshots used in our experiments (including those
used on SFPD’s and GHOST’s evaluations). We used a 4GHz In-
tel Xeon Duo Core machine with 3GB RAM. The median running
time was 8 minutes, including the overhead of reading the memory
snapshot stored on the disk. We consider this running time to be
acceptable for offline analysis.

6.2 SFPD
The goal of SFPD is to identify all malicious function pointers in

the kernel memory. We evaluated SFPD by analyzing the memory
snapshots of systems infected with kernel-mode malware. Specifi-
cally, given a malware sample, we executed it in the Windows Vista
SP1 virtual machine we used to evaluate KOP, and then generated
a memory snapshot after waiting for a few seconds.

For each memory snapshot, we manually built the ground truth
of all malicious function pointers. More precisely, we first manu-
ally identified the code regions occupied by the malware based on
our instrumentation logs. We then conducted an exhaustive mem-
ory search for memory locations pointing to the regions containing
the malware’s code. We then manually verified each of them to
check if they were malicious function pointers.

In our experiments, we tested SFPD with eight real-world kernel
malware samples collected from a public database [17]. Running
on a 4GHz Intel Xeon Duo Core machine with 3GB RAM, SFPD
finishes a scan of a memory snapshot in less than two minutes,
excluding the time KOP takes to map kernel objects in the snapshot.

Our experimental results for SFPD are shown in Table 3. We do
not report results on the System Service Dispatch Tables (SSDTs)
and the Interrupt Dispatch Table (IDT) hooks because these are
static data and therefore not our focus. We compared SFPD with a
baseline algorithm which is similar to previous approaches [3, 22].
This baseline algorithm inspects explicit function pointers based on
the kernel objects identified by the basic traversal. SFPD identified
all the malicious function pointers for all eight malware samples
with zero false alarms. However, the baseline algorithm missed ma-
licious explicit function pointers placed by seven of the eight mal-
ware samples, as well as all of the implicit function pointers. This
was a result of the basic traversal’s low memory coverage, as well
as its lack of knowledge of implicit function pointers. For instance,
the basic traversal fails to identify the EX_CALLBACK_ROUTINE_

BLOCK object added by the malware because it is referenced by the
global variable PspCreateProcessNotifyRoutine via a generic pointer.

The baseline algorithm is able to detect the existence of all the
eight real-world malware samples we tested. After all, to determine
that a system is infected, it is enough to identify just one malicious
function pointer (including entries in SSDTs or IDT not shown in
Table 3). However, it is straightforward to create a new rootkit that
only tampers with function pointers missed by the baseline algo-
rithm. For instance, a rootkit can hook an EX_CALLBACK_ROUTINE

Name Malicious function pointer Type Baseline SFPD

Trojan.Dropper.Farfli.G

DRIVER_OBJECT.DriverInit E 0/2 2/2
DRIVER_OBJECT.MajorFunction[] E 0/30 30/30

EX_CALLBACK_ROUTINE_BLOCK.Function E 0/1 1/1
ETHREAD.StartAddress I 0/2 2/2

ETHREAD.Win32StartAddress I 0/2 2/2

VirTool: WinNT/Syspro.A
DRIVER_OBJECT.DriverInit E 1/1 1/1

DRIVER_OBJECT.MajorFunction[] E 28/28 28/28
FAST_IO_DISPATCH.* E 21/21 21/21

FS_FILTER_CALLBACKS.* E 12/12 12/12
NOTIFICATION_PACKET.NotificationRoutine E 1/1 1/1

TrojanDropper: Win32/Cutwail.K

DRIVER_OBJECT.DriverInit E 0/1 1/1
DRIVER_OBJECT.MajorFunction[] E 2/6 6/6

EX_CALLBACK_ROUTINE_BLOCK.Function E 0/1 1/1
ETHREAD.StartAddress I 0/1 1/1

ETHREAD.Win32StartAddress I 0/1 1/1

VirTool: WinNT/Odsrootkit.C
DRIVER_OBJECT.DriverInit E 0/1 1/1

DRIVER_OBJECT.DriverUnload E 0/1 1/1

Backdoor: WinNT/Syzor.A

DRIVER_OBJECT.MajorFunction[] E 4/4 4/4
ETHREAD.StartAddress I 0/1 1/1

ETHREAD.Win32StartAddress I 0/1 1/1

Rootkit.Win32.Agent.fwz

DRIVER_OBJECT.DriverInit E 0/1 1/1
DRIVER_OBJECT.MajorFunction[] E 1/1 1/1

EX_CALLBACK_ROUTINE_BLOCK.Function E 0/1 1/1
ETHREAD.StartAddress I 0/1 1/1

ETHREAD.Win32StartAddress I 0/1 1/1

Trojan: Win32/DriverByPass
DRIVER_OBJECT.DriverInit E 0/1 1/1

DRIVER_OBJECT.DriverUnload E 0/1 1/1
DRIVER_OBJECT.MajorFunction[] E 4/4 4/4

EX_CALLBACK_ROUTINE_BLOCK.Function E 0/1 1/1
KAPC.KernelRoutine E 6/6 6/6

Backdoor: Win32/Haxdoor
DRIVER_OBJECT.DriverInit E 0/1 1/1

DRIVER_OBJECT.MajorFunction[] E 0/2 2/2

Table 3: Results from applying SFPD to eight memory snapshots infected with different real-world malware samples. Function

pointers are classified as either explicit (E) or implicit (I) based on their kind. A/B means that a scheme detects A out of B malicious

function pointers. Definitions of the data structures are available as part of the Windows Research Kernel [4].

_BLOCK object pointed by PspCreateProcessNotifyRoutine so that its
code is executed whenever a process is created. Furthermore, all
previous approaches including the baseline algorithm do not in-
spect implicit function pointers. Therefore they will miss rootkits
that only hook such function pointers. SFPD, on the other hand, is
able to identify subverted implicit function pointers by leveraging
KOP’s static analysis and near complete memory coverage. In Ta-
ble 3, we can see that SFPD successfully identified all the malicious
implicit function pointers.

Moreover, KOP’s high coverage is critical to prevent SFPD from
generating false alarms, as discussed in Section 5.1. To demon-
strate this, we tested SFPD with the incomplete list of kernel ob-
jects identified by the basic traversal and observed more than 120
false alarms for a single memory snapshot.

6.3 GHOST
We evaluated GHOST’s ability to identify objects hidden by rootk-

its, specifically processes and drivers. To detect hidden processes,
we leveraged the Windows Task Manager as the internal source of
information. We used the WinObj tool [26] to detect hidden drivers.
The same experimental setup described in the SFPD experiments
was used to collect memory snapshots from infected systems.

We tested GHOST with two real-world kernel-mode malware

samples: FURootkit and Syzor.A. We ported the original Windows
XP-based FURootkit to Windows Vista SP1.

GHOST correctly identified all hidden objects in both tests with
zero false alarms. In the FURootkit test, GHOST easily identi-
fied the hidden process by checking the image file name at EPRO-

CESS.ImageFileName and the process ID at EPROCESS.UniqueProcessId

for each EPROCESS object. KOP identified the hidden process ob-
ject by following a different pointer path than the one used by Win-
dows Task Manager.

Syzor.A hides its own driver by zeroing out its driver object in
memory. In the test with Syzor.A, GHOST identified the hidden
driver object because it is empty and therefore it does not even have
a driver name. So obviously it is not in the list returned by WinObj.

7. RELATED WORK
Kernel integrity has been the target of intense security research,

given the increasing threat posed by kernel rootkits and other mal-
ware. Systems like CoPilot [20] and Livewire [8] passively scan the
static portion of the kernel memory for integrity violations. More
elaborate types of checks were also shown by Petroni et al. [21] to
verify the semantic consistency of dynamic kernel structures based
on manually created rules. State-based Control Flow Integrity [22]
is similar to KOP as it also traverses the dynamic kernel object

graph. By using a simple type graph and manual annotations, it
verifies the value of function pointers at each object it finds against
some policy (e.g., pointing to a known module). Gibraltar [3] also
relies purely on static type information and manual annotations to
traverse the kernel memory for integrity checks. KOP represents a
significant improvement over these approaches for its nearly com-
plete coverage. Additionally, by leveraging KOP, SFPD is able to
identify all malicious function pointers including the implicit ones
in our experiments with real-world rootkits.

More preventive approaches towards kernel integrity include SecVi-
sor [29], which enforces code integrity through the use of hypervisor-
based memory protections. Lares [18] uses the same technique to
guarantee the integrity of hooks deployed by anti-virus programs
in the kernel code and data. NICKLE [24] proposes a hypervisor-
based memory shadowing scheme to protect kernel code integrity
and Patagonix [13] also relies on a hypervisor to trap code execu-
tion accesses and make sure that only legitimate code is executed.

Dynamic memory type inference has been addressed by work
such as [23] with the goal of identifying heap corruption and type
safety violations in C programs. Similar to KOP, their system also
relies on type value constraints, type definitions, and an object
graph traversal to map a program’s heap. Others have approached
the problem of inferring data structures from memory images with-
out any access to source code or type definitions. Laika [5] uses
Bayesian unsupervised learning to automatically infer the location
and overall structure of the data objects used by user-level appli-
cations. Their approach is based on the observation that differ-
ent types of data elements have values on different domain ranges.
KOP also leverages this observation in resolving type ambiguities.
Laika focuses on user-space programs. Operating systems have a
much larger and more elaborate memory structure, for which their
approach may not be suited. We believe that leveraging the source
code is an important step to achieve high coverage and accuracy in
analyzing kernel memory.

Pointer analysis for the C programming language has a long his-
tory [1, 2, 6, 9, 10, 19, 30, 31]. Its main goal has traditionally been
performance. Thus, there has not been work that attempted to
achieve both field-sensitivity and context-sensitivity with a code-
base of millions lines of code. However, since our focus is preci-
sion rather than performance, we extended the algorithm described
in [10] to achieve both field-sensitivity and context-sensitivity in
KOP.

8. LIMITATIONS AND FUTURE WORK
Despite the encouraging results obtained from our evaluation,

there is much room for improving KOP.
KOP’s static analysis could be improved to automatically handle

the kernel implementation corner cases discussed in Section 6 in a
more general way. For example, tracking the arithmetic and logical
operations associated with pointer values could provide a general
way to identify bit manipulations in pointers. Likewise, identifying
the use of casts in assignments could help us automatically deter-
mine implicit polymorphism. These improvements could make the
task of porting KOP to a different OS easier.

The techniques used in KOP’s memory analysis are also not per-
fect. Currently KOP relies on its knowledge of pointer fields to
select a candidate from the range of possibilities. There are cases
where this knowledge may not be sufficient to make the correct
choice. It is very hard, for instance, to tell apart small objects with
very few or no pointers at all, which may lead to inaccuracies in the
traversal. One possibility to mitigate these problems is to increase
the scope of our static analysis to determine domain constraints for
other basic types in addition to pointers. For example, a unicode

string should always be terminated by two consecutive null bytes,
and enumerated (enum in C) types can only assume a statically-
defined set of values. Such information would be very useful for
increasing the precision when resolving type ambiguities.

One must also consider the possibility of an attacker trying to
disrupt KOP’s traversal by polluting the kernel memory. He could,
for instance, intentionally break the internal structure of key ker-
nel objects by tampering with the values stored at pointer fields.
As a result, our traversal might incorrectly identify these objects
due to pointer field mismatches. This attack is not as simple as it
sounds, however, since the attacker has to carry it out in a way that
the modifications do not destabilize the whole kernel and crash the
system. Corrupting a pointer value which points to a string, for
example, would likely be much less catastrophic than corrupting
another one pointing to a scheduler queue, or another vital OS data
structure. Our current system can tolerate this kind of attack up
to a certain point, since it checks the pointer-value constraints in a
flexible manner. However, it will not be able to do so if a very large
number of pointers inside an object is manipulated. A more robust
improvement could come from pre-determining which fields can
be tampered with without crashing the system and ignoring them
when matching pointer fields [7].

9. CONCLUSIONS
Dynamic kernel data have become a common target for malware

looking to evade traditional code and static data-based integrity
monitors. Previous solutions for inspecting dynamic kernel data
can reach only a fraction of it, leaving holes which well-engineered
malware can use for evasion. Thus, it is imperative that integrity
protection systems be able to accurately and completely map ker-
nel objects in memory.

In this paper we presented KOP, a system that can map dynamic
kernel objects with very high coverage and accuracy by leverag-
ing a set of novel techniques in static source code analysis and
memory analysis. Our evaluation of KOP has shown substantial
coverage gains over previous approaches. We implemented two
integrity checking applications based on KOP to detect malicious
function pointers and discover hidden objects. We evaluated them
using real-world malware samples, demonstrating that KOP’s high
coverage and accuracy result in the ability to detect kernel integrity
violations missed by previous approaches.

10. ACKNOWLEDGMENTS
We would like to thank Miguel Castro, Manuel Costa and Perik-

lis Akritidis for kindly sharing their codebase with us; John Lin
and Andy Ayers for their help with issues regarding Phoenix; Paul
Royal and the Anti-Malware team in Microsoft for providing mal-
ware samples; Chris Hawblitzel, Ben Livshits and Bjarne Steens-
gaard for helpful discussions on implementing points-to analysis;
David Evans and Helen Wang for their insightful comments on an
early draft of this paper.

This material is based upon work supported in part by the Na-
tional Science Foundation under Grant No. 0716570, Grant No.
0831300, Grant No. 0852131 and Grant No. 0855297, and the
Department of Homeland Security under Contract No. FA8750-
08-2-0141. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation
and the Department of Homeland Security.

11. REFERENCES

[1] L. O. Andersen. Program Analysis and Specialization for the

C Programming Language. PhD thesis, University of
Copenhagen, 1994.

[2] D. Avots, M. Dalton, B. Livshits, and M. S. Lam. Improving
Software Security with a C Pointer Analysis. In Proceedings

of the 27th International Conference on Software

Engineering (ICSE), May 2005.

[3] A. Baliga, V. Ganapathy, and L. Iftode. Automatic Inference
and Enforcement of Kernel Data Structure Invariants. In
Proceedings of the 24th Annual Computer Security

Applications Conference, 2008.

[4] Microsoft Corporation. Windows Research Kernel.
http://www.microsoft.com/resources/

sharedsource/windowsacademic/

researchkernelkit.mspx.

[5] A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging for
Data Structures. In Proceedings of the 8th USENIX

Symposium on Operating Systems Design and

Implementation, 2008.

[6] M. Das. Unification-based pointer analysis with directional
assignments. In Programming Language Design and

Implementation (PLDI), 2000.

[7] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin.
Robust Signatures for Kernel Data Structures. In
Proceedings of the 16th ACM Conference on Computer and

Communications Security (CCS), November 2009.

[8] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion Detection. In
Proceedings of the Tenth ISOC Symposium on Network and

Distributed Systems Security (NDSS), February 2003.

[9] B. Hardekopf and C. Lin. The Ant and the Grasshopper: Fast
and Accurate Pointer Analysis for Millions of Lines of Code.
In Programming Language Design and Implementation

(PLDI), 2007.

[10] N. Heintze and O. Tardieu. Ultra-Fast Aliasing Analysis
using CLA - A Million Lines of C Code in a Second. In
Programming Language Design and Implementation (PLDI),
2001.

[11] G. Hoglund and J. Butler. Rootkits: Subverting the Windows

Kernel. Addison-Wesley Professional, 2005.

[12] S. Hultquist. Rootkits: The Next Big Enterprise Threat?
http://www.infoworld.com/article/07/04/

30/18FErootkit_1.html.

[13] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor
Support for Identifying Covertly Executing Binaries. In
Proceedings of the 17th USENIX Security Symposium, 2008.

[14] Microsoft Corporation. Debugger engine and extensions api.
http://msdn.microsoft.com/en-us/library/

cc267863.aspx.

[15] Microsoft Corporation. Overview of Memory Dump File
Options for Windows Server 2003, Windows XP, and

Windows 2000.
http://support.microsoft.com/kb/254649.

[16] Microsoft Corporation. Phoenix compiler framework.
http://connect.microsoft.com/Phoenix.

[17] Offensive Computing. Public malware database.
http://www.offensivecomputing.net.

[18] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An
architecture for secure active monitoring using virtualization.
In Proceedings of the IEEE Symposium on Security and
Privacy, 2008.

[19] D. J. Pearce, P. H. J. Kelly, and C. Hankin. Efficient
Field-Sensitive Pointer Analysis for C. In Proceedings of the

5th ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering (PASTE), 2004.

[20] N. L. Petroni Jr., T. Fraser, J. Molina, and W. A. Arbaugh.
Copilot – a Coprocessor-based Kernel Runtime Integrity
Monitor. In Proceedings of the 13th USENIX Security

Symposium, 2004.

[21] N. L. Petroni Jr., T. Fraser, A. Walters, and W. A. Arbaugh.
An Architecture for Specification-Based Detection of
Semantic Integrity Violations in Kernel Dynamic Data. In
Proceedings of the 15th USENIX Security Symposium, 2006.

[22] N. L. Petroni Jr. and M. Hicks. Automated Detection of
Persistent Kernel Control-Flow Attacks. In Proceedings of

the 14th ACM Conference on Computer and

Communications Security (CCS), October 2007.

[23] M. Polishchuk, B. Liblit, and C. W. Schulze. Dynamic Heap
Inference for Program Understanding and Debugging. In
Proceedings of the 34th Annual Symposium on Principles of

Programming Languages, 2007.

[24] R. Riley, X. Jiang, and D. Xu. Guest-Transparent Prevention
of Kernel Rootkits with VMM-based Memory Shadowing. In
Proceedings of the 11th International Symposium on Recent

Advances in Intrusion Detection (RAID), 2008.

[25] Rootkit.com. http://www.rootkit.com.

[26] M. Russinovich. WinObj v2.15.
http://technet.microsoft.com/en-us/

sysinternals/bb896657.aspx.

[27] M. E. Russinovich and D. A. Solomon. Microsoft Windows

Internals (4th Edition). Microsoft Press, 2005.

[28] J. Rutkowska. klister. http://www.rootkit.com/
board_project_fused.php?did=proj14.

[29] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny
Hypervisor to Provide Lifetime Kernel Code Integrity for
Commodity OSes. In Proceedings of the 21st ACM

Symposium on Operating Systems Principles, 2007.

[30] B. Steensgaard. Points-to analysis in almost linear time. In
Symposium on Principles of Programming Languages

(POPL), 1996.

[31] R. P. Wilson and M. S. Lam. Efficient Context-Sensitive
Pointer Analysis for C Programs. In Programming Language

Design and Implementation (PLDI), 1995.

