
Detecting (Absent) App-to-app Authentication on Cross-device
Short-distance Channels

Stefano Cristalli
stefano.cristalli@unimi.it

University of Milan
Milan, Italy

Long Lu
l.lu@northeastern.edu
Northeastern University
Boston, Massachusetts

Danilo Bruschi
danilo.bruschi@unimi.it
University of Milan

Milan, Italy

Andrea Lanzi
andrea.lanzi@unimi.it
University of Milan

Milan, Italy

ABSTRACT
Short-distance or near-field communication is increasingly used by
mobile apps for interacting or exchanging data in a cross-device
fashion. In this paper, we identify a security issue, namely cross-
device app-to-app communication hijacking (or CATCH ), that affect
Android apps using short-distance channels (e.g., Bluetooth and
Wi-Fi-Direct). This issue causes unauthenticated or malicious app-
to-app interactions even when the underlying communication chan-
nels are authenticated and secured. In addition to discovering the
security issue, we design an algorithm based on data-flow analysis
for detecting the presence of CATCH in Android apps. Our algo-
rithm checks if a given app contains an app-to-app authentication
scheme, necessary for preventing CATCH. We perform experiments
on a set of Android apps and show the CATCH problem is always
present on the whole analyzed applications set. We also discuss
the impact of the problem in real scenarios by presenting two real
case studies. At the end of the paper we reported limitations of our
model along with future improvements.

CCS CONCEPTS
• Security and privacy → Authentication; Mobile and wireless
security; Software and application security.

KEYWORDS
android, data-flow analysis, authentication protocols, mobile secu-
rity

ACM Reference Format:
Stefano Cristalli, Long Lu, Danilo Bruschi, and Andrea Lanzi. 2019. Detect-
ing (Absent) App-to-app Authentication on Cross-device Short-distance
Channels. In 2019 Annual Computer Security Applications Conference (ACSAC
’19), December 9–13, 2019, San Juan, PR, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3359789.3359814

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACSAC ’19, December 9–13, 2019, San Juan, PR, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7628-0/19/12.
https://doi.org/10.1145/3359789.3359814

1 INTRODUCTION
Cross-device communications allow nearby devices to directly com-
municate bypassing cellular base stations (BSs) or access points
(APs) [13, 17, 18] . Such a paradigm can bring many benefits, such
as spectral efficiency improvement, energy saving, and delay reduc-
tion. Without the need for infrastructure, such a technology enables
mobile users (e.g., Android) to instantly share information (e.g., pic-
tures and videos) with each other, even in areas without cellular
coverage or access points [21]. It is also becoming an important
technology for mobile social networks [12]: friends close to each
other can be automatically identified and paired up. Moreover, this
technology is used to establish the so-called mobile ad-hoc clouds,
which take advantage of unused resources of nearby devices to
provide cloud services, such as data and computation offloading.
This is also a typical case of IoT environment, where IoT devices
communicate with each other on short-distance channels [10].

Several solutions exist for securing cross-device communication.
In the Android environment, they allow authentication of devices
and communication channels [11, 20]. However, these solutions are
not sufficient to protect the entire communication flow. Specifically,
the proposed protection system in [11] restricts apps’ access to
external resources, such as Bluetooth, SMS and NFC, by defining
new SEAndroid types to represent the resources based upon their
identities observed from their channels. The policies bind an app to
a particular device on a specific channel. In this case, a malicious
app installed on one device, which is allowed to communicate with
a paired phone, can interfere with the communication and inject
data on the channel. This problem is due to the fact that the authen-
tication between apps is missing, and such authentication is needed
in addition to the device-level and channel-level authentication.
One can solve this problem by designing Android access control
at system level for preventing an unauthorized access to commu-
nication channel (e.g, Bluetooth) during security operations, and
removing public resources for stopping side-channel attacks [20].
This, however, makes the system less usable and compatible for the
apps that already use the public resources for legitimate purposes.
Moreover, these systems do not handle channels such as: SMS,
Audio, Wi-Fi and NFC. We name this security issue cross-device
app-to-app communication hijacking, or CATCH. We argue that
CATCH is critical and is due to the fact that no APIs or mechanisms

https://doi.org/10.1145/3359789.3359814
https://doi.org/10.1145/3359789.3359814


ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Stefano Cristalli, Long Lu, Danilo Bruschi, and Andrea Lanzi

are made available to Android programmers for performing app-
level authentication on short-distance channels (e.g., Bluetooth,
Wi-Fi-Direct).

In this paper, we study the problem of mutual authentication
between two apps running on two different devices and commu-
nicating over a short-distance channel. Although such channels
already provide device pairing and authentication methods, these
methods only operate at the device or channel level. They are obliv-
ious to the apps running on the devices. In this study, we first define
the authentication scheme for short-distance channels. We then
design a new tool that is able to analyze a given Android app and
detect potential CATCH vulnerabilities (i.e., the lack of app-to-app
authentication). Our tool uses several data-flow analysis techniques
and is able to recognize specific if-statement conditions in the code
related to the authentication scheme. Such particular conditions
can be precisely recognized since, in our context, the analyzed
authentication model must be performed with some sort of dynam-
ically generated secret (out-of- band authentication) (Section 3.1)
that is usually stored in the dynamic memory (e.g. heap, stack).
We perform some experiments to show the flexibility of our tool
on detecting authentication schemes, even when the target app
has been manipulated with the ProGuard obfuscator, one on the
most used obfuscators for Android [3]. Our tool can be deployed in
several contexts: it can serve as a tool for the developer, or it can
scan apps in distributing environments (e.g. Google Play) for de-
tecting potential vulnerabilities on Android apps that communicate
by using short-distance channels.

In summary, this paper makes the following contributions:
• We identify a security problem called cross-device app-to-
app communication hijacking (CATCH), which commonly
exists in Android apps that use short-distance channels, and
afflicts all the tested Android versions. We perform experi-
ments on a dataset that contains 662 Android apps that use
Bluetooth technology, collected in the Androzoo repository.
• We provide a solution to the CATCH problem by design-
ing and developing an authentication scheme detector that
analyzes Android apps to discover potential vulnerabilities.
We tackle several challenges in identifying code boundaries
of the authentication scheme, along with the authentication
checks.
• We validate the results of our system on Android apps with
manual analysis, and test its resilience in detecting the au-
thentication scheme. The results show that our approach
produces 0% of false positives and false negatives. We also
show two case studies on real Android apps.

2 BACKGROUND
In this section we provide the necessary background to understand
the security vulnerabilities in Android apps performing peer-to-
peer communication.

2.1 Authentication for Cross-device
App-to-app Communication

In this paper we study the problem of mutual authentication be-
tween two apps running on different devices and communicating
over a short-distance channel. Although such channels already

provide device pairing and authentication methods, these meth-
ods only operate at the channel level: they allow two devices to
be paired and mutually authenticated (i.e., establishing a channel)
but they are oblivious of the apps running on the devices (i.e., all
apps on these devices share this established channel). As a result,
when two devices are paired and authenticated at the channel level,
it is possible for a malicious app on one device to interfere in a
communication on the channel between two legitimate apps.

Currently, most cross-device, peer-to-peer communications chan-
nels are authenticated by using an out-of-band scheme that works
as follows. A user (requesting user) A initiates a communication
from his device to a nearby device, whose user (accepting user) B
is then prompted with confirmation. The confirmation is requested
either with a secret PIN that B has to communicate to A via a sepa-
rate channel (e.g., verbally), or as a simple “accept” button presented
along with information that enables the identification of the de-
vice trying to initiate the communication. These steps are already
implemented in Android; one never needs to re-implement authen-
tication for the communication channel. Once authentication has
passed, communication can begin. Bluetooth uses encryption to
protect the channel. It is important to note two points related to
authentication in this scenario:

(1) Authentication occurs via sharing of out-of-band informa-
tion/secret.

(2) Authentication performed on the channel (Figure 1) is not
sufficient to guarantee authentication between higher level
applications communicating over the channel.

Point 1) is important as a general property of authentications
performed in our scenario. The exchanged information needed to
confirm authentication is, in practice, visual and verbal contact
between the two users, and the out-of-band element is a constant
in all this type of authentications. More strongly, we exclude the
possibility of authentication being carried out exclusively via infor-
mation passed on the same channel being authenticated, as a result
of previous research [8, 26].

Figure 1: Authentication of A2A communication is not guar-
anteed by channel authentication

To understand why the lack of app-level authentication is dan-
gerous, let us consider the following example (Figure 2): a chat
app using Wi-Fi-Direct opens a ServerSocket, accepting commu-
nication through it and display incoming messages to the final
user.

The intended use of the app is to be installed on two devices
that communicate with each other in a peer-to-peer fashion. We
also consider the presence of a malicious app on one device, this
is a common threat model, as shown in [20]. Since the devices are



Detecting (Absent) App-to-app Authentication on Cross-device Short-distance Channels ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

authenticated, and not the apps, the malicious app has permission
to communicate over the channel, as any other app installed on the
device. The malicious app can therefore craft custom messages to
send to the other device, which are displayed as if they were sent
from the original app. If there is no code performing authentication
in the benign app, there is no possibility of detecting this sort of
action.

Depending on the particular context, there are some scenarios
in which the attack can become very dangerous:

• Phishing: in cases like the example described above, the ma-
licious app could send phishing material to the other app.
The user will be likely to trust and open the content, as he
will have no means to distinguish it from benign content
sent from the device communicating with him.
• Malware delivery: the same system could be used to deliver
malware to the user, in the form of malicious files that would
trigger a vulnerability upon opening (for instance, a mali-
cious PDF file that targets a vulnerable PDF reader).
• Exploitation: if the target app performs internal operations
depending on commands received from the communication
channel, the malicious app could send commands that could
change the execution flow and trigger unwanted behavior.
For instance, a command to delete the user data could be
issued to a file manager app that accepts operations via
Bluetooth device.

It is important to note that other network attacks such as MiTM
are difficult to accomplish in this context, since the attacker should
be physically close to the devices in order to hijack the commu-
nication, and would also need to overcome or bypass the channel
protections, such as encryption. For this reason we believe that
the attack explained above is the most realistic in this environ-
ment. We name the underlying problem common to all these sce-
narios cross-device app-to-app communication hijacking, or
CATCH. Having established the potential impact of the problem,
we aim at building a system for automatic analysis of Android apps,
targeted at detecting the presence (or lack thereof) of authentica-
tion on particular communication channels. The purpose of our
system is to provide a tool that will help app developers to secure
their software. Moreover, our detector can also be used as a security
scanner on app markets (e.g., Google Play) for detecting potential
authentication vulnerabilities.

Figure 2: Malicious app sending content to chat app

3 APPROACH OVERVIEW
This section describes the design and structure of our approach. We
build our system with the goal of automatically verifying the exis-
tence of app-to-app authentication in Android apps. To detect app
authentication in an automated way, we mainly face the following
challenges:
C1) We need to define a generic scheme that captures the es-

sential logic of app-to-app authentication. Such a scheme is
necessary for identifying and evaluating the implementation
of authentication in apps. (Section 3.1)

C2) We need to define a strategy for differentiating between an if-
statement that does not operate on security critical data and
an if-statement that is a part of the authentication scheme.
(Section 3.2)

C3) Additionally, the authentication scheme can be implemented
in several ways according to the developer experience. This
adds an additional layer of difficulty for our analysis, that
should be general enough to also capture such cases. (Section
3.2)

We now proceed to illustrate our approach for building an analysis
tool that is able to tackle these challenges and provide accurate
results in terms of detection.

3.1 Authentication Definition
In this section we define an authentication scheme for cross-device
communication in Android environment. More specifically our au-
thentication model considers two devices, D1 and D2, with apps A1
and A2 respectively installed. The two devices establish an authenti-
cated channel, on top of which A1 and A2 initiate a communication.
Such form of authentication proposes authenticated information
exchange between mobile devices using several methods different
than the standard RF channel [26]. These are called out-of-band,
side-channels or location-limited channels (LLCs) [28], and include
audio, visual, infrared, ultrasound, and other forms of transmis-
sion [7, 23, 24, 27]. Such techniques allow the receiver to physically
verify the source of the transmission. Using this information, the
devices are mutually authenticated, and a secure shared key can be
established. More precisely in such an authentication scheme we
recognize the following steps:

(1) A2 obtains a secret that will be used to authenticate commu-
nication. This secret is either generated on device D2, and
then communicated to app A1, or it is generated by D1 and
then shared with A2. Such a communication uses an out-of-
band channel which is also called a “human assisted channel”.
Such a channel cannot be manipulated by an attacker, and
thus it is considered trusted by definition.

(2) Once A1 and A2 share the same secret, they can start send-
ing data, using the secret as authenticator. Depending on
what the secret is and the application protocol, the data
could be encrypted with a key derived from the secret (e.g.,
Hash(Secret)), or the secret could be sent as plaintext along
with the data for authenticating the transmission.

(3) In both cases (encryption with key derived from the secret,
or secret sent with data as a simple pass-phrase/PIN), app
A2 needs to perform authentication checks on the received
data. In the first case, A2 needs to check that the decryption



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Stefano Cristalli, Long Lu, Danilo Bruschi, and Andrea Lanzi

operation performed by the secret key is correct, and in the
second case A2 needs to check whether the pass-phrase/PIN
is correct. These checks must occur before any critical use of
the data, otherwise the communication is not authenticated.
Only in case the checks are correct, the data is authenticated
and the communication can continue.

We mentioned “authentication checks” that are performed in
step 3. It is crucial to define what form these controls might assume,
in a way that helps us target their recognition in code. Moreover
such a definition should be general enough to capture the majority
of several forms of the authentication schemes deployed by different
developers. We define a communication in our model as some
exchange of data from A1 to A2, beginning when A2 reads the
data from the communication channel. We define a use of the
data as any operation whose result depends on the data itself. We
define an authenticated use of the data as any instruction that
needs to be authenticated before access to the data. We give the
following definition of authentication in our model: given a
communication over a peer-to-peer channel with exchanged data
D, an authentication is a condition in code situated between the
beginning of the communication and the first authenticated use of
D, which either: (1) allows the execution to continue, in case D is
successfully authenticated, or (2) prevents any authenticated uses
of D every time the authentication is unsuccessful. The internal
logic of the authentication checks depends on the context, and is
therefore not possible to include it in the definition.

3.2 Detection of Authentication Scheme
For detecting authentication, we first explore the possibility of
identifying authentication schemes via the use of particular APIs.
If such APIs existed, then we could reduce our analysis to a code
reachability problem. This is the case, for instance, of authentication
over Unix domain sockets [25]. Unfortunately, we could not find
any standard APIs for app-level authentication for the technologies
we analyzed. For this reason, we shift our focus on detecting a set
of instructions in the code that might indicate the presence of an
authentication mechanism. In such a context we must clearly define
a strategy for identifying possible authentications once we track
the data of our interest. The first step for creating a scalable analysis
framework is to identify boundary code points in the application.
Such boundary permits to restrict the analysis only to a part of
code that potentially could contain an authentication scheme. After
the boundary area is identified we can apply further code analysis
techniques in order to validate the authentication scheme. In our
system the boundary area is defined by two main elements: the
entry and exit points.

More specifically, an entry point is an instruction in the code that
indicates the start of the communication over the analyzed channel
(e.g., data receiving). Given this broad definition, we can recognize
multiple entry points in an application for a given communica-
tion. For example, In Listing 1 we can see an example of Bluetooth
communication in Android app. Since the data is read from the
stream at line 13, the instruction represents an entry point. The call
socket.getInputStream() at line 11 is also an entry point for this
communication. We are obviously interested in entry points that

Listing 1: Sample Bluetooth socket communication
1 try {
2 socket = mmServerSocket.accept();
3 } catch (IOException e) {
4 Log.e(TAG, "Socket's accept() method failed", e);
5 break;
6 }
7

8 if (socket != null) {
9 InputStream inputStream;
10 try {
11 inputStream = socket.getInputStream();
12 byte[] buffer = new byte[10];
13 inputStream.read(buffer);
14 if (buffer[1] == 10) {
15 writeToFile(buffer);
16 FunctionLibrary fl = new FunctionLibrary();
17 writeToFile(fl.return6());
18 }
19 mmServerSocket.close();
20 } catch (IOException e) {
21 e.printStackTrace();
22 }
23 break;
24 }

help to indicate the start of communication for a specific channel
such as Bluetooth. An accurate identification of the entry points
for a communication channel will ensure that all possible com-
munications over such channel are identified and targeted by our
analysis.

The end of the boundary is defined by an exit point. An exit point
is represented by the first authenticated use of the data coming from
the monitored channel. Even though exit points exist for every
communication, it is hard to define whether an exit point is an
authenticated use of the data or not, since this is a semantic property
of an use. As an example, the use of line 15 in Listing 1, where the
data is written to file, may or may not be an authenticated use,
depending on what the file is used for. If it is a log file used simply
for debugging purposes, and virtually never checked unless an
error occurs, then it is not important that authentication necessarily
occurs before such point. On the other hand, if the data defined
into the file is part of the main flow of the app protocol, then
authentication must necessarily occur in order to avoid untrusted
and potentially dangerous data in the file.

Due to this ambiguity of the use of the data, we design a detec-
tion strategy that is not dependent on exit points. In particular we
design an algorithm (Algorithm 3.1), based on program analysis
techniques, that performs data and control flow analysis. The al-
gorithm starts computing the Control Flow Graph (CFG) and Data
Dependency Graph (DDG) for each analyzed app (line 7-8). Both
graphs are necessary to find out the relationships between data of
our interest and the condition statements that depend on such data.
Then, for each node in the CFG, the system determines whether
it is an entry point by using function isEP. This function uses a
pre-defined table based on function signatures related to a specific



Detecting (Absent) App-to-app Authentication on Cross-device Short-distance Channels ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

communication channel (Section 4.2). If no entry points are found,
the result NO AUTH NEEDED is returned (lines 9-12). In all the other
cases, each node in the DDG is analyzed. If the node represents
a condition in the code (function isCondition), then the system
checks if there exists a path in the DDG that connects an entry
point to the conditional node (lines 16-17).

Algorithm 3.1: Authentication detection
1 input: APK app
2 output: NO AUTH NEEDED |
3 NO AUTH FOUND |
4 POSSIBLE AUTH FOUND
5

6 entry_points ← []
7 cfg ← computeCFG(app)
8 ddg← computeDDG(app)
9 foreach node in cfg
10 if isEP(node) then entry_points . add(node)
11 end
12 if entry_points == [] then return NO AUTH NEEDED
13

14 foreach node in ddg
15 if isCondition (node) then
16 foreach ep in entry_points
17 path ← findPath(ep, node, ddg)
18 if path != null
19 then
20 if isCheckConstant(node, ddg) == false
21 then return POSSIBLE AUTH FOUND
22 endif
23 end
24 endif
25 end
26

27 return NO AUTH FOUND

If such a path exists, it means that we possibly found an authen-
tication scheme. However it is still possible to obtain false positives:
simple sanity checks or other controls on data would be all erro-
neously identified as authentication. In order to reduce the number
of false positives among conditions that are candidate for authen-
tication, the algorithm applies a constant propagation technique.
Technically speaking, such technique is using reaching definition
analysis results. In particular, if a constant value is assigned to a
variable, and such variable is not modified before a point P in code,
then the variable has a constant value at P and can be replaced with
the constant.

In our context, since the analyzed authentication model must
be performed with some sort of dynamically generated secret (out-
of-band authentication, Section 3.1) that is usually stored in the
dynamic memory (e.g., heap, stack), by using constant propagation
we can discard all the conditions that use constant values in their
comparison, as they certainly do not represent authentication on
data. Constant propagation is a very powerful technique for our
analysis, and it helps to reduce the false positives to 0% in our
experiments as we will show in Section 5.2.

4 SYSTEM IMPLEMENTATION
We now discuss our practical implementation choices for the al-
gorithm presented in the Section 3.2, by describing the technical
details of our system.

4.1 Overview
We implemented our system on top of the Argus-SAF framework
[29]. The framework offers various tools for analyzing Android
apps, such as the generation of the CFG and DDG that we need
in our algorithm. Also, the framework translates Dalvik bytecode
into an intermediate representation (IR), called Jawa, on which our
algorithm performs the analysis. In particular, various conditions
in code, including while and for loops, if statements and excep-
tion try/catch blocks, are all translated into if statements in the
intermediate representation. The CFG and DDG built by the frame-
work contain nodes that map to single Jawa instructions, making it
possible to have the fine-grained, instruction-level information that
we need in our algorithm for targeting conditions. Furthermore,
Argus-SAF permits inter-component modeling, meaning that tran-
sitions between components such as Android intents are integrated
in the graphs. These features made possible for us to explore the
application code together with the graphs built by Argus-SAF on
top of it. Our system is composed of three main components: (1)
Graphs Builder, (2) Path Finder and (3) App-to-app Authentication
Finder. Our framework accepts an app in input (as an APK file),
and outputs either that no authentication has been found, or a list
of specific instructions in code that may contain authentication
checks.
• The Graphs Builder starts the Argus-SAF analysis on the
APK. The framework applies four sequential steps: (1) the
Jawa IR is generated from the Dalvik bytecode, then (2) an en-
vironment model of the Android system is generated. This is
crucial to capture the control flow and interactions between
components, such as the dispatch of intents between activi-
ties. (3) At this point, Argus-SAF builds an inter-component
control flow graph (ICFG) of the whole app. At the same time,
it performs data flow analysis and builds an inter-component
data flow graph (IDFG) on top of the ICFG. (4) Finally, the
framework builds a data dependency graph (DDG) on top
the IDFG. We mainly use information from this graph in our
analysis. The information of our interest is extracted in the
Graph Builder by using classes ComponentBasedAnalysis
and InterComponentAnalysis for extracting the CFG and
DDG. The graphs are then passed to the next component.
• The main goal of the second component, Path Finder, is to
locate areas in the code where an authentication schememay
exist. This is done by identifying data flows for the protocol
of our interest, and performing reaching definitions analysis
to see if any conditional statement operates on data read
from the channel that we are inspecting. The Path Finder
component traverses the CFG received from Graphs Builder,
and marks entry points for the analyzed channel based on a
predefined list of method signatures. It then finds all condi-
tional statements, which is accomplished by extracting all
the nodes of type IfStatement in Argus-SAF. At this point,
it is possible to perform reaching definition analysis, to check



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Stefano Cristalli, Long Lu, Danilo Bruschi, and Andrea Lanzi

whether there is at least one conditional statement using a
variable that was earlier defined as data read from the chan-
nel. The DDG obtained from Graphs Builder contains all the
information to perform this search: definition-use pairs map
to edges in the graph, so Path Finder traverses it in order to
find possible authentication paths. It sends the discovered
paths, if any, to the last component.
• App-to-app Authentication Finder applies further checks to
the paths received from Path Finder, in order to exclude false
positive results by recognizing checks against constant val-
ues. In particular, it analyzes the if statements in the Jawa
IR, which can be divided into two types: (1) comparisons
between two variables, (2) comparisons between a variable
and a constant. The system immediately discards the condi-
tions of the second type from our search, as they certainly
do not represent the authentication scheme that we look for
(see Section 3.2). For conditions of the first type, our system
uses constant propagation to determine if one of the two
variables in the condition is a constant. It walks up the DDG
from the IfStatement to their definition, reconstructing the
value-history of the variables from their initialization. If the
last-assigned value to either of the two variables (before the
IfStatement) is a constant, then we are in the same case of
type-two conditions, and the path is again discarded for the
same reasons.

4.2 Choice of Entry Points
In our implementation we focused on Bluetooth, since it is the most
used technology in Android apps for short-distance communica-
tion. Wi-Fi-Direct is still not very common among the Android
apps, in fact in the dataset that we analyzed we only found a few
samples (10) of it. To show the security issue of CATCH applied on
Wi-Fi-Direct channel we analyzed one of these apps as a case study
(Section 6.2). However, the core of our analysis is orthogonal to
any communication channel. The only part that can change among
different channels is the identification of the entry points. For Blue-
tooth communication based on BluetoothSocket, we found two
possible entry points (i.e., where a BluetoothSocket stream starts
receiving data): BluetoothSocket.getInputStream and Input-
Stream.read. A typical Bluetooth communication flow involves
the former function, called to obtain an InputStream object, fol-
lowed by an invocation to the latter function. In the DDG of an
application containing this type of communication, the instructions
operating on data read from the channel are linked to both func-
tions. It would appear that InputStream.read is the best choice
for an entry point: semantically, it actually represents the point in
which the data from the stream enters the control flow of the app.
However, given the general use of class InputStream outside the
context of Bluetooth communication, this choice led to many false
positives in practical experiments. For this reason, the choice of
BluetoothSocket.getInputStreamworkedmuch better as defini-
tion for our entry point for Bluetooth. Although it is an instruction
preceding the actual read operation of data from the Bluetooth
stream, it uniquely identifies our protocol of interest. Moreover in
all the communication flows that we observed in Bluetooth apps

operating on BluetoothSockets, the functions are always used in
pairs.

5 EXPERIMENTAL EVALUATION
In this section we present and discuss the results about the experi-
ments we performed to validate our system.

5.1 Preliminary considerations
In order to test the efficacy of our algorithm we need to collect a
balanced dataset that contains both positive (i.e. apps with authen-
tication at application level) and negative samples (i.e. apps without
authentication). In our analysis we noticed that the security prob-
lem of CATCH afflicts all the Android apps using Bluetooth in our
dataset. For this reason the dataset is unbalanced. To test our system
under such conditions, we divided the experiments into two main
categories: (1) a dataset analysis on APKs retrieved from a research
repository [5], aiming at confirming the efficacy of the algorithm
on negative samples; (2) a targeted analysis on custom apps built
by applying code transformation techniques (e.g. obfuscation) for
proving that the authentication scheme is correctly detected by our
algorithm.

5.2 Dataset analysis of Android apps
To evaluate the efficacy of our system, we ran tests on a large
number of APKs collected from the Androzoo repository [5]. The
Androzoo dataset contains more than three million unique Android
apps, crawled from several Android markets: Google Play, Anzhi
and AppChina. In our experiments we pre-filtered APKs from the
dataset and selected non-obfuscated apps that use Bluetooth. We
decided to focus only on Bluetooth apps considering the amount of
manual analysis we performed during the design of our algorithm,
which could help us as a ground truth for validating our results. We
started analyzing a total of 210,425 APKs, randomly chosen from the
Androzoo repository. In order to select the appropriate Bluetooth
APKs we applied the following filter: check if an app (1) requires
the Bluetooth permissions in the manifest file; (2) contains certain
libraries and classes related to Bluetooth (e.g., BluetoothSocket).
The filter produced a total of 2,739 APKs.

We then applied a second filter where we exclude the obfuscated
apps since it is quite hard validate them at this first step. For this
filtering we focus on the ProGuard obfuscation tool, which is the
free software most commonly used by developers, and it is referred
in the Android Documentation [3]. In particular, we implemented
some heuristics for recognition based on the typical class names
(e.g. a.class) produced by ProGuard in obfuscated APKs. This
filter selected a total of 942 APKs from the initial set of 2,793, which
means that the majority of the apps in our dataset, almost 70%, use
ProGuard for code obfuscation. After running our algorithm, we
discovered that 704 of the selected apps do not have any entry point
for Bluetooth communication in the CFG. This happens in cases
where Bluetooth functionality is imported in some library/classes,
but never used in the code, so the instructions that we would mark
as entry points for our analysis never appear in the CFG/DDG. We
also excluded such APKs from our dataset. Finally, we obtained a
number of 238 APKs, suitable for our analysis and evaluation.



Detecting (Absent) App-to-app Authentication on Cross-device Short-distance Channels ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

We then performed our first experiment. We ran our system
on the 238 APKs without constant propagation enabled. This ex-
periment shows the important role of the constant propagation
technique on reducing false positives. It shows that 26 APKs out of
238 are found positive (i.e., about 11% of the APKs are potentially
performing authentication on data read from Bluetooth sockets)
and the rest are found negative (i.e., not performing authentication).
they never applied any checks on data received form the Bluetooth
channel.

In our second experiment, we enabled the constant propagation
technique and we ran our system on the same set of 238 APKs. In
this case we observed that all of the positive samples found pre-
viously were actually false positives (i.e., they used one constant
value in the parameter of the if statement marked as possible au-
thentication). This result shows that no app in the dataset performs
app-to-app authentication when using Bluetooth.

At this point, we manually investigated the negative cases to check
for any false negatives. To this end, for validating our results we
chose a sample of 20 random APKs from our dataset of 238 APKs
and we manually analyzed them. We observed that all of them
receive data from the Bluetooth channel, but they never apply any
checks on such data before using it. Our manual analysis found 0
false negatives. Our experiments show that 100% of the analyzed
APKs in our dataset which perform Bluetooth communication using
Bluetooth sockets are potentially vulnerable to the CATCH attack
model.

5.3 Dataset composition
We analyzed the composition of our dataset to make sure that we
did not run tests on sample/unused/abandoned apps. We sampled
300 APKs (containing permissions/classes for Bluetooth) from our
dataset, and performed a manual analysis by searching them on
Google Play. We found that about 30% of the apps were present on
this market. We classified the apps by category, depending on their
description. The vast majority of apps belongs in the following
categories:
• Game apps, where Bluetooth is used for playing peer-to-peer
• IoT apps for specific devices, where Bluetooth is used to send
and receive data from the controlled device or sensors
• Business apps, using Bluetooth to send data from smartphone
to computer, or again smartphone to device

Other categories with less APKs included health apps, used for
communicating with medical devices, cryptocurrency-related apps,
and smart home management apps.

5.4 Targeted analysis
For our second analysis, we built a custom app using Bluetooth. It
only performs these basic operations: it reads from a Bluetooth-
Socket when the user triggers an action, and it displays any re-
ceived content on screen. We then patched the app to include a
basic authentication scheme fitting our model: upon starting, the
app generates a random secret PIN of 4 digits, and shows it on the
screen. This secret needs to be communicated out-of-band to other
apps interacting with ours (e.g., verbally to another user wanting
to send data). When reading from the BluetoothSocket, the app
first expects to receive the PIN in plaintext, in the first four bytes

read from the socket’s InputStream. If the PIN matches the one
generated by the app, the communication is accepted; otherwise it
is rejected and the user is informed of the event. We found that our
algorithm correctly predicts the possible presence of authentication.

We ran another test to check if changes introduced by common
optimization and obfuscation tools would impact our algorithm. In
this case we validate the obfuscation transformation since we can
check the ground-truth provided by our application. In particular,
we used the ProGuard tool [2] on our sample app, since it is the
most commonly used by developers and it is recommended in
the Android documentation [3]. ProGuard performs a series of
transformations aiming to remove unnecessary code, and renames
types and variables to hinder reverse engineering. We ran ProGuard
on both versions of our test app (with and without authentication).
We found that the transformations introduced by this tool do not
impact the detection capabilities of our algorithm, which correctly
discriminates the apps’ behavior. In particular, we observed the
following results:
• Sample app without authentication and ProGuard disabled,
the system returns NO AUTH FOUND.
• Sample app without authentication and ProGuard enabled,
the system returns NO AUTH FOUND.
• Sample app with authentication and ProGuard disabled, the
system returns POSSIBLE AUTH FOUND.
• Sample app with authentication and ProGuard enabled, the
system returns POSSIBLE AUTH FOUND.

5.5 Analysis of obfuscated APKs
Our results from the targeted tests indicate that ProGuard trans-
formations do not affect the precision of our tool in the detection
of authentication. For this reason, we decided to run our tool on
ProGuard-obfuscated APKs from our dataset. We selected the 1797
obfuscated APKs that were initially discarded, and filtered them
for Bluetooth use and appearance of entry points in the CFG/DDG
as we did for non-obfuscated ones. This process yielded a total of
424 APKs, which we analyzed (combined with the previous exper-
iments, we have a total of 662 APKs analyzed that use Bluetooth
technology). 100% of the APKs were identified as negative (i.e., not
containing authentication) by our tool, with constant propagation
enabled. To validate this result, we manually analyzed 15 APKs,
randomly chosen from the obfuscated APKs dataset. Since our tool
indicates where the entry points are located in the CFG, and what
the possible authentication paths have been analyzed, we were able
to manually validate the absence of authentication checks, confirm-
ing that our heuristic approach is not only powerful enough for
detection, but also that it is resilient to the obfuscation techniques.

5.6 Performance Analysis
In this section we report the time needed for each phases of our
analysis.

Time Threshold. One of the main critical point for our analysis
is how to set a time threshold for building the CFG and DDG in
Argus-SAF, since the computational complexity explodes for large
applications, and the system is not able to construct the entire
graphs within reasonable time. After this threshold is hit while
analyzing a single component in an APK, Argus-SAF will stop its



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Stefano Cristalli, Long Lu, Danilo Bruschi, and Andrea Lanzi

analysis and move to the next component. In order to set up a
correct time threshold we need to be sure that the constructed CFG
and DDG include the Bluetooth entry points and the authentication
checks (if present). To this end, we performed some experiments on
APKs collected in our dataset. In particular, for each analyzed app
we first built the graphs by setting a certain time threshold T, and
we then search for Bluetooth entry points inside the computed CFG.
Afterwards, we compute the number of nodes that are dominated
by the entry point node in the graph that represents the number of
instructions that can potentially include the authentication scheme.
We start with a threshold of T = 30 sec., and then increase the value
to T = 60 sec. and T = 120 sec. By comparing the different results,
we notice two important things: (1) for any entry point, both the
number of reachable nodes in the CFG and the number of data
dependency nodes in the DDG are sufficient to contain a potential
authentication scheme. More in details we found on average more
than 10,000 instructions that are dominated by the entry point and
the CFG reachability from a single entry point to any node in the
graph is always above 99%, an expected result given by the inter-
component connections in Android code. (2) The variation of the
results between the three runs is minimal, that it means that we
generally do not miss any important information that would have
been considered adding more time of analysis. For this reason we
chose a threshold of 30sec. for our experiments.

Time of Analysis. For our tool a use case would be code validation
where the detector could serve as a pre-release tool to check for
unauthenticated communication. In such a context the tool should
perform its analysis in a short-time. In this direction we perform
several experiments that show the overhead of the analysis. In
particular the experiments were performed on a laptop running
Ubuntu Linux 17.10, with a Intel Core i7-6700HQ CPU (2.60GHz)
and 16 GB of RAM. We specifically measured the time taken to
analyze the 26 apps that were found positive by the first version of
our system (without constant propagation). The average time spent
for modeling the APK in Argus-SAF is 5 minutes, while the average
running time of our algorithm on the generated graphs is 2 minutes,
giving a total average time of 7 minutes. Although the variance is
high, we think that even the worst-case execution time is suitable
for the use cases we designed, considering that the release of an app
is not an instantaneous process, and that an average of 10 minutes
is a feasible testing time for an automated developing pipeline of
Android apps. Moreover we can decrease the time threshold for
building graphs from 2 minutes to 30 sec. and gain more efficiency
by reducing the average time from 7 to 5 minutes in total.

6 CASE STUDIES
In this section, we present two real attacks case studies that we
select from our dataset in which our analyzer gave negative results.
Such applications are representative of the common type of applica-
tions that can be used in peer-to-peer communication environment:
(1) chat app, (2) data sharing app. We will now discuss the attack
implementation, and the engineering effort required for its setup
and execution along with its own limitations.

6.1 Data injection on BluetoothChat
We target the Android BluetoothChat app [1]. This app is a working
example of peer-to-peer chat that is affected by CATCH problem,
since it does not implement any app-level authentication scheme.
The BluetoothChat app gives the user the possibility to scan for
nearby devices, connect to one of them by using RFCOMM identifier,
and then send text messages via Bluetooth. In this attack scenario
we will describe a data injection attack to a remote device.

Attack Preparation. To accomplish a successful attack we need
to satisfy two preliminaries requirements: (1) the malicious app
needs to recognize the presence (i.e., installation) of the target
application on the device. (2) the malicious app needs to detect
when the target application is opened and run on the device. These
two states, installed and opened, allow the malicious app to identify
a potential active connection between BluetoothChat applications
on different devices.

In order to detect the presence of the target app, the malicious
app can retrieve a list of installed apps by querying the PackageMan-
ager object. Such operation is not privileged and it can be executed
by any app installed on the device. For the Bluetooth Chat sample,
the malicious app can detect the installation of it just looking at
the package name. Once the presence of the vulnerable app has
been identified, the next step for the malicious app is to exploit
a legitimate communication for spoofing content and deliver the
attack payload. However, this may happen at unpredictable time
since the malicious app does not know when a remote commu-
nication will be activated. While it is possible for the malicious
app to continuously try to exploit the communication by using
polling technique, this is not desirable from the attacker’s perspec-
tive since it creates suspicious events that can be detected. The
best result would be achieved if the malicious app could monitor
the vulnerable app, and perform the attack only at the appropriate
time. While it is very difficult to fully monitor the behavior of other
apps from another app [30], a possible way to partially achieve the
result is to monitor the list of open apps, obtainable via the Activ-
ityManager class, specifically with the getRunningAppProcesses
method. Again, this information can be requested to the Android
system by any app without any specific privilege; the malicious
app can continuously poll this list, and try the attack when the
communication is open and running in foreground.

Payload Running. If the attacker has satisfied the previous two
requirements the attack can be performed successfully. In particular
for the BluetoothChat case, the attacker needs to install a malicious
app on one of the two devices that performs the communication.
The communication protocol over Bluetooth is implemented with
BluetoothSocket, with a RFCOMM identifier for the chat service.
If the attacker knows the identifier, his malicious app can send
messages to the app on the other device, which will be indistin-
guishable from benign ones. In this case, the app is open source, so
the RFCOMM identifier is embedded inside the application, and a
simple manual investigation can reveal it. Once the attacker knows
the identifier he can perform data injection on the remote device,
and send a message to a remote application. The impact of this
data injection is potentially high especially if the receiver trusts the
sender and for instance she is opening any forwarded links, which



Detecting (Absent) App-to-app Authentication on Cross-device Short-distance Channels ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

in this case could lead to phishing pages controlled by the attacker.
The following figure shows an example of hijacked communication
in BluetoothChat. The first two messages are written by the user
on the device Huawei P9 Lite, while the third is sent by our mali-
cious app; the receiving user on device Nexus 6 will be unable to
distinguish the malicious messages.

6.2 Data injection on Wi-Fi Direct +
In this second case study we focus on real-world app that use Wi-Fi
Direct + [4] collected from the Google Play market. This file shar-
ing app has more than 500,000 downloads, it is constantly being
updated, and it has a paid version, Wi-Fi Direct + Pro. This infor-
mation definitely indicates that the app is relevant for our analysis.
Since this apps does not implement and app-to-app authentication
as revealed by our tool we can perform a data injection attack.

App Functionalities. Wi-Fi Direct + offers the possibility to share
file between two Android devices, via Wi-Fi-Direct protocol. After
performing Wi-Fi-Direct pairing, on one device the user should
select the option for receiving files. At this point, his device is
entering in listening mode for incoming connections. When the
user on the other device selects the option for sending a file. A
success dialog is then displayed on the receiving device and the file
is transferred.

Payload running. After pairing has been established, the app on
the receiving device opens a ServerSocket, and accepts connec-
tions on it. If a malicious app on the sending device tries to connect
to the socket, we have a typical CATCH scenario, in which the
receiving app is not able to distinguish legitimate and malicious
data. For the attack to succeed, some technical details have to be
considered. The attacker needs to study the Wi-Fi Direct + protocol
used to send files in order to replicate it without errors, then he
has to build a malicious app for sending files with this protocol. At
this point, by activating the sending of a file from the malicious

app at the right time, as explained in the previous case study, the
attacker is able to inject data in the communication with another
device. With Wi-Fi Direct + in particular, the useful time window
for data injection is reduced in comparison to the BluetoothChat
case study; this is because Wi-Fi Direct + on the receiving device
will accept only one file before closing the communication channel,
as opposed to BluetoothChat, which keeps listening for incoming
messages. This is a problem for the attacker: if the benign app
sends its file first, then the file sent by the malicious app will not
be accepted (race condition). If the opposite happens instead, the
benign file will be rejected, and the sending user will be notified
of an error. Depending on the situation, the users might verbally
communicate and establish that something suspicious happened.
This risk is always present, but it is greatly reduced in cases such as
BluetoothChat, where no error messages are displayed to the users.
Although we recognize this problem for the attacker in some cases,
we have to also consider the situations in which the users are not
able to identify the attack. For instance, the sending user receiving
an error message may think of a bug in the app, especially if the
receiving user confirms that the file has been correctly received
(his app will display the correctly received malicious file). In our
experiments we were able to perform the attack successfully. We
were able to run the malicious app and send a malicious file without
causing any alarm on the target device.

7 DISCUSSION
In this section we discuss about limitations of our analysis along
with impact of the problem that we found out.

7.1 Impact of the problem
From our research, it is clear that high-level, app-to-app authentica-
tion is almost never present in Android apps that communicate on
channels such as Bluetooth. Aside from the results of our algorithm
on the large dataset, we could not manually find apps performing
this type of authentication for the specific channels of our interest.
We postulate that this is due to a lack of awareness in programmers,
who build their code relying on sources such as the official An-
droid documentation, and the network Stack Overflow for learning
how to use a particular technology (e.g. Bluetooth). It is common
to reuse sample code snippets from these sources with minimal
adapting [19]; since they seem not to address the problem we are
stating in any way, the issue is propagated, and any app using these
technology is potentially vulnerable. It is worth noting that the
actual impact of the vulnerabilities, as well as the difficulty of hypo-
thetical attacks, greatly depend on the functionalities of the specific
app being attacked, and need to be evaluated on a case-by-case
basis. The evaluation of the general danger introduced by the lack
of app-to-app authentication on a large scale is out of the scope of
this research. We think that generally, vulnerabilities based on apps
accepting unauthenticated content would be medium-impact (as in
permitting phishing and/or DOS at best), but we cannot exclude the
existence of particular apps where it would be possible to obtain
more severe effects (e.g. arbitrary code execution).



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Stefano Cristalli, Long Lu, Danilo Bruschi, and Andrea Lanzi

Listing 3: Threads in Bluetooth communication
1 // Main thread code
2 new ReadThread().start()
3

4 ...
5

6 // ReadThread code
7 public void run() {
8 ...
9 if (socket != null) {
10 InputStream inputStream;
11 try {
12 inputStream = socket.getInputStream();
13 inputStream.read(buffer);
14 // We expect authentication happening here,
15 // not in a separate thread
16 }

7.2 Limitations of our analysis
From the experiments, our system shows excellent performance
in detecting the presence of CATCH vulnerabilities in Android
apps. However, the results have to be considered together with
the limitations of our technique. Our analysis suffers from the gen-
eral limitations of static analysis. One of these limitation concerns
the precision of the model of apps control flow. Argus-SAF is not
able to handle particular intra-component and inter-component
transitions, such as ones performed with reflection, and it cannot
correctly model concurrency [29]. In practice, reflection is not com-
monly used by Android developers to perform normal tasks such
as transitions between Activities. Instead concurrency is definitely
present in peer to peer apps; to avoid blocking input/output, sepa-
rate threads are typically spawned on demand to handle read/write
operations on the channel (this applies to both Bluetooth and Wi-Fi
Direct). In case of authentication, we expect to see controls on data
read from the channel immediately after a read operation, follow-
ing our authentication model. So, while it is true that it would be
a problem to correctly model authentication flows that involved
concurrent operations, there is no reason to expect authentication
occurs in a separate thread in reality (see Listing 3). To further
validate our results (Section 5.2) we manually analyzed 20 Android
apps from 662 dataset apps and we check whether threads func-
tions defined in the apps include any authentication scheme (false
negative results). Our manual analysis shows that no one of the app
functions threads analyzed contained any authentication scheme.

8 RELATEDWORK
To the best of our knowledge, we are the first to explore the potential
dangers associated with the lack of app-to-app authentication in
Android apps. However, previous research has made important
contributions in related areas.

Security of Android communication channels. Previous work high-
lighted the problems existing in Android device-to-device commu-
nications [11, 20]. In particular, Demetriou et al. [11] studied several

channels of communication in Android (such as Bluetooth, SMS,
Internet and audio) showing that the security model of Android
does not offer adequate measures for protecting certain secrets. To
address this problem, they build a security system, called SEACAT,
to enforce fine-grained protection on the above resources. Our work
continues the exploration of missing security features in Android,
and how apps can be vulnerable if developers make the wrong
assumptions about the security of the underlying system.

Security models of peer-to-peer protocols. Claycomb and Shin
formally studied the problem of authentication in mobile devices
[8], and use BAN logic to prove that device authentication using
a single communication channel is not possible. We consider this
result when building our model: in particular, this justifies our
assumption of the secret exchange happening out-of-band. Shen
et al. focus on Wi-Fi Direct technology, studying its security and
discussing related best practices [26]. Again, importance of out-of-
band channels to obtain authentication is highlighted, and used in
the implementation of a secure Wi-Fi Direct protocol.

Using static analysis for detecting authentication. Static analysis
techniques have been extensively used in previous work, for in-
stance for detecting malicious application logic on Android or Web
application[9, 15, 22], and for detecting privacy leaks in both iOS
[14] and Android [16] apps. Closely related to ours is the work of
Shao et al., which studies the presence of authentication in the use
of Unix domain sockets on Android [25]. We followed the same
choice of tools used to perform the analyses, favoring Argus-SAF
[29] (formerly Amandroid) over FlowDroid [6] because of its supe-
rior handling of inter-component communication. An important
difference is that we could not model our problemwith as a standard
taint-analysis reachability search, so we had to build our custom
data dependency analysis on top of the tools provided by Argus-
SAF.

9 CONCLUSION
In this paper, we have shown the extension and potential impact of
CATCH vulnerabilities in Android apps, providing a threat model
and specific definitions for the problem, as well as manual and auto-
mated analysis for experimental evaluation. Our main contribution,
the automated system for APK analysis, is a first line of defense
against human error, and could be used to identify vulnerable apps.
Nevertheless, it is clear that the problem can be effectively solved
only by raising awareness among Android developers, by providing
them with appropriate documentation explaining the dangers of
CATCH, as well as APIs and libraries to correctly perform high-
level app-to-app authentication on peer-to-peer communication
channels.

ACKNOWLEDGMENTS
This project has received funding by the Italian Ministry of Foreign
Affairs and International Cooperation (grant number: PGR00814).
The project has also received funding by the US Army Research
Office (grant number: W911NF-17-1-0039).

REFERENCES
[1] [n.d.]. Android BluetoothChat Sample. https://github.com/googlesamples/

android-BluetoothChat. Accessed: 2019-01-18.

https://github.com/googlesamples/android-BluetoothChat
https://github.com/googlesamples/android-BluetoothChat


Detecting (Absent) App-to-app Authentication on Cross-device Short-distance Channels ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

[2] [n.d.]. ProGuard. https://www.guardsquare.com/en/products/proguard. Ac-
cessed: 2018-11-19.

[3] [n.d.]. Shrink your code and resources. https://developer.android.com/studio/
build/shrink-code. Accessed: 2018-11-19.

[4] [n.d.]. WiFi Direct +. https://play.google.com/store/apps/details?id=com.
netcompss_gh.wifidirect. Accessed: 2019-02-15.

[5] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(MSR ’16). ACM, New York, NY, USA, 468–471. https://doi.org/10.1145/2901739.
2903508

[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’14). ACM, New
York, NY, USA, 259–269. https://doi.org/10.1145/2594291.2594299

[7] W. R. Claycomb and D. Shin. 2009. Secure device pairing using audio. In 43rd
Annual 2009 International Carnahan Conference on Security Technology. 77–84.
https://doi.org/10.1109/CCST.2009.5335562

[8] William R. Claycomb and Dongwan Shin. 2011. Extending Formal Analysis of
Mobile Device Authentication. J. Internet Serv. Inf. Secur. 1 (2011), 86–102.

[9] Andrea Continella, Michele Carminati, Mario Polino, Andrea Lanzi, Stefano
Zanero, and Federico Maggi. 2017. Prometheus: Analyzing WebInject-based
information stealers. Journal of Computer Security 25 (02 2017), 1–21. https:
//doi.org/10.3233/JCS-15773

[10] Sanjeev Das, JanWerner, Manos Antonakakis, Michalis Polychronakis, and Fabian
Monrose. 2019. SoK: The challenges, pitfalls, and perils of using hardware
performance counters for security. In Proceedings of 40th IEEE Symposium on
Security and Privacy (S&P’19).

[11] Soteris Demetriou, Xiao-yong Zhou, Muhammad Naveed, Yeonjoon Lee, Kan
Yuan, XiaoFeng Wang, and Carl A Gunter. 2015. What’s in Your Dongle and
Bank Account? Mandatory and Discretionary Protection of Android External
Resources.. In NDSS.

[12] Mianxiong DONG, Takashi Kimata, Komei Sugiura, and Koji ZETTSU. 2014.
Quality-of-Experience (QoE) in Emerging Mobile Social Networks. IEICE
Transactions on Information and Systems E97.D (10 2014), 2606–2612. https:
//doi.org/10.1587/transinf.2013THP0011

[13] K. Doppler, M. Rinne, C.Wijting, C. B. Ribeiro, and K. Hugl. 2009. Device-to-device
communication as an underlay to LTE-advanced networks. IEEE Communications
Magazine 47, 12 (Dec 2009), 42–49. https://doi.org/10.1109/MCOM.2009.5350367

[14] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. 2011. PiOS:
Detecting Privacy Leaks in iOS Applications.. In NDSS. 177–183.

[15] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. 2016. Triggerscope: Towards detecting logic
bombs in android applications. In Security and Privacy (SP), 2016 IEEE Symposium
on. IEEE, 377–396.

[16] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. 2012. Androi-
dLeaks: automatically detecting potential privacy leaks in android applications
on a large scale. In International Conference on Trust and Trustworthy Computing.
Springer, 291–307.

[17] Y. Li, S. Su, and S. Chen. 2015. Social-Aware Resource Allocation for Device-to-
Device Communications Underlaying Cellular Networks. IEEE Wireless Commu-
nications Letters 4, 3 (June 2015), 293–296. https://doi.org/10.1109/LWC.2015.
2410768

[18] Jiajia Liu, Yuichi Kawamoto, Hiroki Nishiyama, Nei Kato, and Naoto Kadowaki.
2014. Device-to-device communications achieve efficient load balancing in LTE-
Advanced networks. Wireless Communications, IEEE 21 (04 2014). https://doi.
org/10.1109/MWC.2014.6812292

[19] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras. 2015. The Attack of
the Clones: A Study of the Impact of Shared Code on Vulnerability Patching. In
2015 IEEE Symposium on Security and Privacy. 692–708. https://doi.org/10.1109/
SP.2015.48

[20] Muhammad Naveed, Xiao-yong Zhou, Soteris Demetriou, XiaoFeng Wang, and
Carl A Gunter. 2014. Inside Job: Understanding and Mitigating the Threat of
External Device Mis-Binding on Android.. In NDSS.

[21] Phond Phunchongharn, Ekram Hossain, and Dong In Kim. 2013. Resource alloca-
tion for device-to-device communications underlaying LTE-advanced networks.
IEEE Wireless Communications 20, 4 (2013), 91–100.

[22] Andrea Possemato, Andrea Lanzi, Simon Pak Ho Chung, Wenke Lee, and Yanick
Fratantonio. 2018. ClickShield: Are You Hiding Something? Towards Eradicating
Clickjacking on Android. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’18). ACM, New York, NY, USA,
1120–1136. https://doi.org/10.1145/3243734.3243785

[23] M. K. Reiter, J. M. McCune, and A. Perrig. 2005. Seeing-Is-Believing: Using Camera
Phones for Human-Verifiable Authentication. In 2005 IEEE Symposium on Security
and Privacy (S&P’05)(SP), Vol. 00. 110–124. https://doi.org/10.1109/SP.2005.19

[24] N. Saxena, J. . Ekberg, K. Kostiainen, and N. Asokan. 2006. Secure device pairing
based on a visual channel. In 2006 IEEE Symposium on Security and Privacy (S
P’06). 6 pp.–313. https://doi.org/10.1109/SP.2006.35

[25] Yuru Shao, Jason Ott, Yunhan Jack Jia, Zhiyun Qian, and Z. MorleyMao. 2016. The
Misuse of Android Unix Domain Sockets and Security Implications. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’16). ACM, New York, NY, USA, 80–91. https://doi.org/10.1145/2976749.
2978297

[26] W. Shen, B. Yin, X. Cao, L. X. Cai, and Y. Cheng. 2016. Secure device-to-device
communications over WiFi direct. IEEE Network 30, 5 (September 2016), 4–9.
https://doi.org/10.1109/MNET.2016.7579020

[27] Dongwan Shin et al. 2006. Using a two dimensional colorized barcode solution
for authentication in pervasive computing. In Pervasive Services, 2006 ACS/IEEE
International Conference on. IEEE, 173–180.

[28] Dirk Balfanz Smetters, Dirk Balfanz, D. K. Smetters, Paul Stewart, and H. Chi
Wong. 2002. Talking To Strangers: Authentication in Ad-HocWireless Networks.

[29] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2018. Amandroid: A
Precise and General Inter-component Data FlowAnalysis Framework for Security
Vetting of Android Apps. ACM Trans. Priv. Secur. 21, 3, Article 14 (April 2018),
32 pages. https://doi.org/10.1145/3183575

[30] Nan Zhang, Kan Yuan, Muhammad Naveed, Xiao yong Zhou, and XiaoFengWang.
2015. Leave Me Alone: App-Level Protection against Runtime Information Gath-
ering on Android.. In IEEE Symposium on Security and Privacy. IEEE Computer So-
ciety, 915–930. http://dblp.uni-trier.de/db/conf/sp/sp2015.html#ZhangY0ZW15

https://www.guardsquare.com/en/products/proguard
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
https://play.google.com/store/apps/details?id=com.netcompss_gh.wifidirect
https://play.google.com/store/apps/details?id=com.netcompss_gh.wifidirect
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1109/CCST.2009.5335562
https://doi.org/10.3233/JCS-15773
https://doi.org/10.3233/JCS-15773
https://doi.org/10.1587/transinf.2013THP0011
https://doi.org/10.1587/transinf.2013THP0011
https://doi.org/10.1109/MCOM.2009.5350367
https://doi.org/10.1109/LWC.2015.2410768
https://doi.org/10.1109/LWC.2015.2410768
https://doi.org/10.1109/MWC.2014.6812292
https://doi.org/10.1109/MWC.2014.6812292
https://doi.org/10.1109/SP.2015.48
https://doi.org/10.1109/SP.2015.48
https://doi.org/10.1145/3243734.3243785
https://doi.org/10.1109/SP.2005.19
https://doi.org/10.1109/SP.2006.35
https://doi.org/10.1145/2976749.2978297
https://doi.org/10.1145/2976749.2978297
https://doi.org/10.1109/MNET.2016.7579020
https://doi.org/10.1145/3183575
http://dblp.uni-trier.de/db/conf/sp/sp2015.html#ZhangY0ZW15

	Abstract
	1 Introduction
	2 Background
	2.1 Authentication for Cross-device App-to-app Communication

	3 Approach Overview
	3.1 Authentication Definition
	3.2 Detection of Authentication Scheme

	4 System Implementation
	4.1 Overview
	4.2 Choice of Entry Points

	5 Experimental Evaluation
	5.1 Preliminary considerations
	5.2 Dataset analysis of Android apps
	5.3 Dataset composition
	5.4 Targeted analysis
	5.5 Analysis of obfuscated APKs
	5.6 Performance Analysis

	6 Case Studies
	6.1 Data injection on BluetoothChat
	6.2 Data injection on Wi-Fi Direct +

	7 Discussion
	7.1 Impact of the problem
	7.2 Limitations of our analysis

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

