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Abstract

Probabilistic classification has shown success in detect-
ing known types of software bugs. However, the works
following this approach tend to require a large amount of
specimens to train their models. We present a new machine
learning-based bug detection technique that does not
require any external code or samples for training. Instead,
our technique learns from the very codebase on which the
bug detection is performed, and therefore, obviates the
need for the cumbersome task of gathering and cleansing
training samples (e.g., buggy code of certain kinds).

The key idea behind our technique is a novel two-step
clustering process applied on a given codebase. This
clustering process identifies code snippets in a project
that are functionally-similar yet appear in inconsistent
forms. Such inconsistencies are found to cause a wide
range of bugs, anything from missing checks to unsafe
type conversions. Unlike previous works, our technique
is generic and not specific to one type of inconsistency or
bug. We prototyped our technique and evaluated it using
5 popular open source software, including QEMU and
OpenSSL. With a minimal amount of manual analysis on
the inconsistencies detected by our tool, we discovered
22 new unique bugs, despite the fact that many of these
programs are constantly undergoing bug scans and new
bugs in them are believed to be rare.

1 Introduction

Using machine learning techniques to detect software
bugs has been studied extensively. Existing works
generally follow the same high-level idea: training models
on a large set of known bugs and then using the trained
models for detecting similar bugs in the wild. This line
of work, including [13, 20, 27, 28], has been shown to be
largely effective at catching known bugs. However, these
“learn-from-bugs” type of detection techniques face two

limitations when used in practice. First, they generally
require large datasets of known bugs for training, which
can be difficult or impractical to collect and cleanse.
Second, the models usually have to be trained on specific
types of bugs to achieve good results. Therefore, the
training and detection are usually limited to a single bug
type (i.e., bug-specific). Moreover, the detection accuracy
tends to vary a lot across different bug types.

In this paper, we present a new machine learning-based
approach to software bug detection, which does not
require external datasets or code samples for training
(e.g., code containing known bugs). Instead, it learns
from the to-be-checked codebase itself (hence the paper
title). It is not limited to any bug types, and it can even
detect unknown types of bugs. Our approach is inspired
by the observation that many bugs in software manifest as
inconsistencies deviating from their non-buggy counter-
parts, namely the code snippets that implement the similar
logic in the same codebase. Such bugs, regardless of their
types, can be detected by identifying functionally-similar
yet inconsistent code snippets in the same codebase. For
instance, from basic bugs such as absent bounds checking
to complex bugs such as use-after-free, as long as the
codebase contains non-buggy code snippets that are
functionally similar to a buggy code snippet, the buggy
one can be detected as an inconsistent implementation
of the functionality or logic. This observation is more
obvious in software projects of reasonable sizes, which
usually contain many clusters of functionally-similar
code snippets, often contributed by different developers.
It is very uncommon for all such snippets to have the
same bug (or their developers to make the same mistake).

Our work, named FICS, uses a machine learning-based
method to detect functionally-similar yet inconsistent
code snippets in a given codebase, facilitating the
detection of inconsistency-related bugs. We note that



the high-level idea of detecting bugs as deviations from
normal code is not new. Previous works adopted this
idea for detecting system errors [7], incorrect API usages
[14, 32], and other specific types of bugs [15, 24, 30].
However, FICS is significantly different from these works
in that: (1) it is not specific to one or a few types of bugs;
(2) it does not require any domain expertise about bugs
or manually-defined detection heuristics.

Figure 1 shows the high-level workflow of FICS.
It starts by extracting code snippets (or Construct,
explained shortly) from a given codebase (∂). It then
performs a two-step clustering method, which first groups
functionally-similar parts of the code (∑) and then detects
deviations or inconsistencies among them (∏). Finally,
the detected inconsistencies are presented to a human
analyst for bug triage (π).

There are two principal challenges solved by our
design of FICS: (1) finding a proper code granularity to
effectively capture functionalities and inconsistencies,
and (2) making the approach scalable to handle large code-
bases. Given that security-related bugs and patches are
often regional or contained in a sub-function scope [12],
we propose an intra-procedural granularity, named
Construct, which is defined as a size-configurable
sub-graph of an intra-procedural data dependence graph.
We show that this granularity is sufficient for capturing
code similarities and inconsistencies yet small enough to
allow the clustering algorithms to scale to large codebases.
Moreover, we employ two graph embedding techniques:
(1) bag-of-nodes, a coarse-grained graph embedding for
the first-step clustering; (2) graph2vec, a fine-grained
graph embedding for the second-step clustering. They
enable a sufficiently accurate comparison of Construct
similarity and inconsistency at scale.

Our work makes the following contributions:
• We present FICS, the first bug-generic inconsistency-

based bug detection method. It uses a two-step
clustering method to detect functionally-similar yet
inconsistent code snippets. The detection operates
on Constructs, a size-configurable graph repre-
sentation of sub-function code, specially-defined
to facilitate code similarity comparison. FICS also
uses two new graph embedding techniques, one for
each clustering step, which together make the tool
sufficiently accurate and scalable to large codebases;

• We used FICS to scan five popular open source
projects, including QEMU and OpenSSL. Despite
that some of these projects are considered well-tested,
we discovered 22 new unique bugs with minimal
manual effort. All of the bugs have been confirmed
by their developers and later fixed by either our pull
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Figure 1: High-level workflow of FICS. After a codebase is divided
into smaller pieces, they need to be grouped based on easy-to-learn
characteristics efficiently, and then the most discriminated (inconsistent)
item can be distinguished by learning from more detailed features.

requests or the developers. In addition, our approach
also found 95 code smells like redundant checks;

• Due to the lack of a standard benchmark that
would allow systematic evaluation of inconsistency
detection tools, we propose a novel open-source
benchmark, named iBench, as another contribution
of this work. iBench contains 22 known bugs
in real software. We further evaluate FICS on
iBench and show that FICS can outperform current
inconsistency detection approaches.

2 Background

Inconsistency in code has a broad meaning and may refer
to inconsistent use of APIs, typecasting, checks, etc. As
we aim for a generic code inconsistency detection, we
adopt a general definition for inconsistency. We call a set
of code snippets inconsistent if their semantics or logic
are synonymous, but some parts of their implementation
differ in significant ways.

Although not all occurrences of inconsistent code
indicate bugs, inconsistent implementations of the same
functionality often suggest programmer confusion or
mistakes, which in practice often leads to bugs. Previous
research [9] has shown success in finding thousands of
bugs and not-buggy implementation issues by only track-
ing down inconsistencies in code clones. Inconsistencies
sometimes may indicate critical security bugs even in
well-tested codebases written by well-known companies.

Various factors can introduce inconsistencies into a
codebase. For example, large software usually has a com-
mensurate number of developers, which sometimes leads
to inconsistent implementations of the same functionality
during development. Another common reason is when
a bug fix is applied only to where the bug was originally
discovered, but not to other parts of the code with the same
bug. It is also plausible that the same bug will appear again
in the future. For example, a similar bug to three missing
check bugs–which were found by our system–in LibTIFF



787 : s i z e _ t dukmlen = 0 ;
[ . . . ]

873 : dukmlen = ASN1_STRING_length ( ukm ) ;
874 : dukm = OPENSSL_memdup ( ASN1_STRING_get0_data ( ukm ) , dukmlen ) ;
875 : if ( ! dukm )

[ . . . ]
879 : if ( EVP_PKEY_CTX_set0_dh_kdf_ukm ( pc tx , dukm , dukmlen ) <= 0)

[ . . . ]

Missing ‘OPENSSL_free(dukm)’

(a) crypto/dh/dh_ameth.c, dh_cms_encrypt function

677 : s i z e _ t dukmlen = 0 ;
[ . . . ]

729 : dukmlen = ASN1_STRING_length ( ukm ) ;
730 : dukm = OPENSSL_memdup ( ASN1_STRING_get0_data ( ukm ) , dukmlen ) ;
731 : if ( ! dukm )

[ . . . ]
735 : if ( EVP_PKEY_CTX_set0_dh_kdf_ukm ( pc tx , dukm , dukmlen ) <= 0)

[ . . . ]
742 : OPENSSL_free ( dukm ) ;

(b) crypto/dh/dh_ameth.c, dh_cms_set_shared_info function
Figure 2: A memory leak in OpenSSL found by FICS. The figures show two similar Constructs on dukmlen variable in two different functions. This
could be seen as an inconsistency in the code as there is one buggy and one correct implementations. The red node is missed in dh_cms_encrypt function.

had been patched 4 years ago [1] by its developers because
they received a crash report from a fuzzer at that time.

An intuitive idea to detect code inconsistencies is based
on majority-voting: if there are multiple pieces of code
implementing the same functionality, we can generally
assume the majority is correct, and any deviation from the
majority could be signs of buggy or low-quality code. For
instance, we found a bug in OpenSSH by detecting the
inconsistencies among the code snippets operating on a
hash variable , where the key is cleared from memory in
three implementations while it is missed in the fourth one.1

Although majority-voting assists analysts in identify-
ing buggy code more reliably, it is still possible that a piece
of buggy code is similar to only one functionally-similar
code snippet in the codebase. We call such cases one-to-

one inconsistencies. Unlike the majority-voting-based
approaches, FICS can detect one-to-one inconsistencies.
FICS takes into consideration the size of the code snippets.
If two code snippets (i.e., one buggy and one non-buggy)
have nontrivial sizes, multiple operations are performed
on the target variable and a small difference/inconsistency
between the two snippets can indicate bugs. For example,
Figure 2 shows an example of a memory leak FICS

found in OpenSSL. Although there are only two similar
code snippets (e.g., a one-to-one inconsistency), many
operations on the dukmlen variable in both snippets are
the same, and a missing free in one of them makes this one-
to-one inconsistency a true bug. Majority-voting-based
approaches cannot detect such bugs.
FICS is designed to detect code inconsistencies indica-

tive of bugs without being limited to one or a few specific
types of bugs. The advantage of our inconsistency-based
bug detection is three-fold. First, our detection is
bug-generic. It complements existing bug detectors, most
of which tend to be specific to certain types of bugs due
to the limitation of their heuristics or trained models.
Second, our detection does not require any external data or
code samples for training, or any domain expertise about
bugs and their manifestations. Lastly, our system can
detect an inconsistency with or without majority-voting.

1https://github.com/openssh/openssh-portable/commit/2d1428b

3 Related Work

ML for Bug Discovery: Machine learning (ML) tech-
niques have been used successfully to model and detect
buggy code patterns in different programming languages.
Usually, such approaches are divided into two groups,
namely supervised and unsupervised learning.

Supervised techniques have been used to model both
buggy and non-buggy code patterns. Motivated by its
huge success in other domains, deep learning techniques
were recently used by researchers for detecting bugs.
VulDeePecker [13] applies deep learning techniques,
specifically a bidirectional LSTM model, to automatically
learn patterns from vulnerable code gadgets. The code
gadgets are small parts of the code that are extracted based
on program dependency. The main drawback of these
approaches is the heavy efforts required for gathering,
cleansing, and labeling a large number of training samples.

Without requiring data labeling, unsupervised learning
approaches cluster code snippets that are similar to known
vulnerabilities and then search for potential variants
of the vulnerabilities in each cluster. Yamaguchi et al.
[29] proposed a method for assisting security analysts
with source code auditing. It can identify vulnerabilities
by inspecting only a small fraction of the codebase. A
follow-up work [28] introduced a novel representation
of source code, using a joint data structure, called a code
property graph. This representation draws from ASTs,
control flow graphs, and program dependence graphs.

All of the aforementioned works use ML techniques to
learn from the known bugs and use the learned models to
discover occurrences of modeled bugs. In comparison, our
approach does not require training on labeled datasets or
bug-oriented clustering. Instead, we apply ML techniques
to find functionally-similar yet inconsistent code snippets,
which often contain bugs and can be easily verified
by developers or testers when presented with both the
consistent and inconsistent implementations of the same
functionality or logic.

Genius [8] addresses the scalability issue in the existing
ML-based bug-finding techniques and further improves
search accuracy. It embeds control-flow graphs (CFGs)
into high-level numeric feature vectors. Xu et al. [27]



uses the structure2vec technique to extract more accurate
embedding from different code snippets and then trained
a Siamese network to detect similar bugs. While such
approaches used graph embedding to find variants of
known bugs in different program versions, we drew
inspiration from these works for inconsistency detection
and proposed: (1) a new code representation of proper
granularity for functional similarity comparison; and
(2) adopting two popular graph embedding techniques,
namely bag-of-nodes and graph2vec, to model inconsis-
tencies in an accurate and efficient way, which make our
approach scalable to large codebases in the real world.

Inconsistency Detection: Engler et al. proposed to ana-
lyze bugs as deviant behavior [7], which is a seminal work
related to code inconsistency detection. Their approach is
to infer developer beliefs and then cross-check them with
the implementation for contradictions. Bixie [16, 21] is a
tool that detects a form of code inconsistency, defined as
code fragments outside of any normally terminating exe-
cution (e.g., dead code or code making conflicting assump-
tions). This line of work is by nature rule-based and fo-
cused on a few specific types of programming errors, such
as assertion violations. In comparison, our ML-based ap-
proach is not limited to detecting particular types of bugs.

DejaVu [9] and Jiang et al. [11] proposed generic
techniques to detect syntactic inconsistencies in code.
These works rely on abstract syntax tree, which is not
semantic-aware, to find inconsistent code. This approach
and ours share the same high-level idea of utilizing code
inconsistency for detecting errors in programs. However,
our work is semantic-aware and detects inconsistencies at
a deeper level using a novel code construct representation
that captures not only abstract syntax but also data and
control flows. As a result, these previous work is unable
to detect the majority of the bugs that FICS can.

Some bug detectors, though not designed to capture
general inconsistencies in code, can be viewed as
identifying specific types of coding inconsistencies.
APIsan [32] infers correct API usages in source code
through symbolic execution and semantic cross-checking.
Similar to APIsan, AntMiner [5, 14] and NAR-Miner [6]
detect API usage inconsistencies. However, instead of
using symbolic execution, they mined programming rules
(e.g., frequent patterns) from the program dependency
graph to detect violations. Chucky [30] detects a specific
type of code inconsistency, namely missing checks, which
are often indicative of security-related bugs. Chucky uses
a rule-based detection method, which requires a list of
pre-defined APIs as sinks for its taint analysis. Crix [15]
is the most recent inconsistency detection technique on
missing checks. It identifies critical variables based on the

concept of security checks [24], and then cross-checks
the modeled constraints of the peer slices of a critical
variable. The notion of a slice (Construct) by Crix is a
data flow path–not a data flow graph.

The above line of work is semantic-aware and closely
related to FICS. However, our work overcomes two major
limitations of the prior work. First, these works were
designed to detect only specific types of inconsistencies,
such as those related to API usage [5, 14, 32] or sanity
checks [15, 30]. They cannot detect other classes of
inconsistencies that their design was not modeled after.
Moreover, their approaches cannot be easily extended to
detect inconsistencies or bugs in a type-agnostic fashion.
In contrast, FICS provides a generic approach to detecting
inconsistency-induced bugs regardless of inconsistency
types, thanks to the novel two-step clustering design.
Second, the prior approaches need to rely on majority
voting to determine inconsistencies because of the
limitation in their code construct definitions. The majority
voting-based approach cannot detect one-to-one inconsis-
tencies (explained in §2) as FICS does. Our graph-based
definition of code constructs carries additional context
information, which captures one-to-one inconsistency.
Besides, our inconsistency detection does not involve
opportunistic majority voting. Nonetheless, if a bug is
a one-liner or its inconsistency is visible only in a very
small code construct, Crix [15] and APISan [32] are
better suited to catch it when the bug type matches their
detection targets (e.g., a missing check or an API misuse).

4 Design

4.1 System Overview

FICS is the first machine learning-based bug detector that
learns and identifies code inconsistencies as indicators
of bugs. It is agnostic to bug types and more generic than
previous inconsistency detectors, which tend to be limited
to certain types of bugs.

Figure 3 shows the workflow of FICS. FICS first
compiles a given codebase in C into LLVM bitcode (∂),
on which the subsequent analysis and learning steps are
performed. It then employs an intra-procedural data-flow
analysis (§4.2.1) to extract from each function small code
pieces, referred to as Constructs (§4.2.2), that represent
basic operations or computations within a function. We
use such intra-procedural Constructs as the inconsis-
tency detection granularity for two reasons. First, most
security bugs and fixes tend to be limited within a single
function [12]. The difference between a piece of buggy
code and its non-buggy counterpart (or its patched ver-
sion) usually does not extend beyond a function. Second,
having FICS focused on intra-procedural inconsistencies



makes the analysis scalable to large codebases.
After extracting the Constructs (∑–∏), FICS ab-

stracts the Constructs (π) to a generic form amenable
to the two-step clustering (∫–Ω). The first-step clustering
(§4.3.1) groups functionally-similar Constructs

whereas the second-step clustering, zooming in on each
group, finds Constructs that are inconsistent from the
rest in the same group. The two-step clustering is designed
to accurately capture functionally-similar yet inconsistent
Constructs while remaining scalable to large codebases.

In the final step (æ), FICS performs a deviation
analysis (§4.4), which identifies inconsistencies that are
indicative of bugs. The result helps human analysts focus
on potential bugs and facilitate bug triage.

4.2 Code Representation and Granularity

Finding a suitable code representation and determining
a proper code granularity are the first two challenges that
we solved in order to employ machine learning techniques
to effectively identify similar yet inconsistent code. We
discuss our choice of the code representation in §4.2.1
and our definition of the code granularity in §4.2.2.
4.2.1 Simplified Program Dependence Graph

Among the existing code representations [4], Program
Dependence Graph (PDG), Control Flow Graph (CFG),
and Abstract Syntax Tree (AST) are the best-known and
widely used for bug discovery [27, 28, 29]. ASTs capture
syntactic information of programs. CFGs record possible
code paths as well as path conditions. PDGs illustrate data
and control dependencies among program statements.

We select PDG as the base to develop a program
representation for FICS. We choose PDG because it
is the most semantically comprehensive among the
common program representations, which suits our need
for discovering and clustering functional similarities.
Moreover, PDGs were originally proposed for the purpose
of program slicing [25]. Their sub-graphs naturally
capture regional control and/or data dependencies, which
serve as ideal primitives for defining Constructs or the
granularity of inconsistent code (discussed in §4.2.2).

In PDGs, a data dependency edge appears from a
program statement to another when an output of the
egress statement is an input to the ingress statement. A
control dependency edge appears when the evaluation
of the egress statement determines whether the ingress
statement is reachable during program execution. We
derive a code representation for FICS by omitting control
dependency edges while keeping data dependency
edges in PDGs. Furthermore, our representation is intra-
procedural and context-insensitive. We call this form of
code representation Data Dependency Graph, or DDG for

short, which is similar to the one used in thin slicing [23].
Our design of DDG is based on the following consid-

erations and trade-offs. First, data dependencies alone are
enough to capture the root cause of a wide range of bugs.
For instance, missing checks, misuses of APIs, bad cast-
ings, and many other types of bugs manifest clearly in a
DDG when compared with non-buggy or patched coun-
terparts. By omitting the control dependence edges, DDG
allows for much more simplified representations of code,
and thus scalable and efficient analysis, without losing
important semantics for detecting common bugs. Second,
bugs and their patches are often contained in a single func-
tion [12], which means the difference between buggy and
non-buggy code snippets is observable on intra-procedural
DDGs. By limiting the scope of analysis within individual
functions, DDG further improves the scalability of FICS
and allows for analysis of large codebases. Third, being
a graph-based representation, DDG lends itself nicely to
mature machine learning techniques (e.g., embedding and
clustering) for detecting similarities and inconsistencies.
4.2.2 ConstructDefinition

FICS’s effectiveness and efficiency also heavily depends
on the code granularity at which the similarity and incon-
sistency analysis is performed. We introduce the concept
of Construct and show that it is a proper code granularity
for our purpose. Informally, a Construct is a subgraph
of a DDG, which represents a somewhat self-contained
subroutine that is part of a function (e.g., processing a
parameter to an API call). Constructs are extracted in
a way conceptually similar to program slicing [25].

Given a DDG, the extraction starts from a specified
node (i.e., the root) and traverses the DDG until all sub-
sequent nodes are covered or the Construct max-depth
is reached. All traversed nodes and edges then form a
Construct. A root variable and the max-depth uniquely
define a Construct. Any variable V used in a function
F can be selected as the root variable for extracting a
ConstructC. In this case, the root of C is the node in F’s
DDG where V is defined or used for the first time (i.e.,
when V enters F). In other words, C contains all code
statements inside F that compute on, or propagate, V .

The max-depth restricts the number of basic blocks that
the longest forward path in a Construct may contain. It
is configurable and can be tuned by FICS users to limit
the depth of Constructs, and therefore, control the max
size of code on which similarity and inconsistency are
determined. By default, the max-depth is set to infinite
(i.e., no limit on the depth of Constructs). As a result,
a Construct contains all nodes and edges in a DDG
reachable from the root. We call such a depth-unlimited
Construct a full-Con. When the max-depth is set to



sample.c
...
INSTALL
config

LLVM bitcodes

; ModuleID = 'sample.c
'%struct._IO_marker = type i32, i8*
...
; Function Attrs: nounwind uwtable
define i32 @main i32 %argc, i8** %argv #0
%1 = alloca i32, align 4
%2 = alloca i32, align 4
%3 = alloca i8**, align 8
%status = alloca i32, align 4
%result = alloca i32, align 4
...

...
Per-Function Intra-Procedural
Data Dependece Graph (DDG)

Per-Variable DDG

Inconsistent Constructs

Two-Step Clustering

C Project
1 2 3 4
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Construct Extraction
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Deviation Analysis

Manual Analysis
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5
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Graph2vec
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9
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Figure 3: FICS’s workflow contains 9 steps. It extracts Constructs from intra-procedural data dependence graphs. Via a two-step clustering process,
FICS groups similarConstructs and then finds inconsistencies within such groups. Eventually,FICS outputs those functionally-similar-yet-inconsistent
Constructs that are likely to be bugs, which human analysts can easily triage.

a finite number n, a Construct cannot have more than
n basic blocks on any forward path. Such Constructs

are referred to as n-Con. For example, when n = 1, a
Construct (i.e., 1-Con) contains only 1 basic block,
where the root is; when n=2, a Construct (i.e., 2-Con)
can at most contains 2 basic blocks along a forward path.
An example of a full-Con is shown in Figure 4b, which
is extracted from Figure 4a. An example of the extracted
1-Con is shown in Figure 4c.

By defining Constructs this way, we generalize the
problem of detecting code inconsistency into the problem
of finding similar and inconsistent operations/compu-
tations on individual data variables. This generalization
allows inconsistencies to be detected in a generic fashion
(i.e., not tied to a specific type of code inconsistency) and
at a relatively small code granularity.

For each function in a program, FICS extracts the
Construct for every parameter and local variable of the
function and every global variable reachable to the func-
tion. In addition, FICS performs Construct abstraction
(π in Figure 3), which serves two goals: (1) removing
certain syntax information that is useless for FICS and can
negatively affect the similarity clustering; and (2) further
minimizing Constructs for more efficient clustering. To
abstract Constructs, we preserve only the variable types
for each program statement and remove all variable names
and versions2. We also eliminate all constants and literals
from program statements. One could argue that integer
literals in conditionals (e.g., icmp) might be useful for
detecting certain bugs (e.g., a comparison is done with 0
instead of EOF or -1). However, based on our observation,
considering integer literals in icmp and similar instruc-

2In static single assignment (SSA) form, existing variables in the
original IR are split into versions.

tions leads to significantly more reported inconsistencies
that are not true bugs. Finally, abstract Constructs are
then used as the input to the two-step clustering.

To understand the potential negative impact of forgoing
literals in our abstraction, we investigated a class of
bugs, namely off-by-one errors, that one may expect
our inconsistency detection to miss. In fact, as shown in
§5.2, FICS can detect 7 out of 11 such bugs in the tested
codebases. This is because, for the majority of off-by-one
errors, the difference/inconsistency between the buggy
and non-buggy/patched code lies in the comparison
operators, rather than the literals.

4.3 Two-step Clustering

We design a two-step clustering procedure to first group
similar Constructs and then identify inconsistent
Constructs or outliers in each group. The high-level
idea can be easily explained using a “two-lense” analogy:
we use a first lense, whose resolution is not very high
but the view is fairly broad, to examine Constructs and
identify those that seem (roughly) similar; we then use a
second lense with a much higher resolution but narrower
view to zoom in to each group of similar Constructs
and find differences (or inconsistences) among the
members. Obviously, the first step clustering should be
somewhat coarse-grained and highly efficient whereas the
second step clustering should be fine-grained and able to
accurately detect subtle yet critical inconsistences. Next,
we explain these two steps of clustering, respectively.
4.3.1 Functionality Clustering

Finding similar constructs is not the same as finding
identical ones. Our clustering needs to tolerate mild
variations among functionally similar Constructs.
Otherwise, the first-step clustering may not view a buggy



5 int d a t a =10;
6 int i ;
7 int b u f f e r

[ 1 0 ] = { 0 } ;
8 if ( d a t a >= 0)
9 {

10 b u f f e r [ d a t a ] = 1 ;
11 }

(a) C code example.

alloca i32

8: load i32 i32*

8: br i1 label label

5: store i32 i32*
10: load i32 i32*

10: sext i32 to i64 8: icmp sge i32

10: getelementptr inbounds ...

10: store i32 i32*

(b) Data Dependence Graph of ‘data’ Variable.

alloca i32

8: load i32 i32*

8: br i1 label label

5: store i32 i32*

8: icmp sge i32

(c) Data Dependence Graph of
‘data’ Variable for the first basic block.

Figure 4: A simple example of an out-of-bound write bug. The first graph shows the full-Con for the ‘data’ variable and the second graph is its
first 1-Con. Both Constructs are abstracted.

OPENSSL_clear_free ( ec
�>key , ec�>k e y l e n ) ;

ec�>key = t k e y ;
ec�>k e y l e n = t k e y l e n ;
[ . . . ]

(a) crypto/cms/cms_enc.c
cms_EncryptedContent_init_bio

[ . . . ]
OPENSSL_clear_free ( ec

�>key , ec�>k e y l e n ) ;
ec�>key = ek ;
ec�>k e y l e n = e k l e n ;

(b) crypto/cms/cms_env.c
cms_RecipientInfo_ktri_decrypt

ec = cms�>d . env . . .
OPENSSL_clear_free ( ec

�>key , ec�>k e y l e n ) ;
ec�>key = cek ;
ec�>k e y l e n = c e k l e n ;
[ . . . ]

(c) crypto/cms/cms_kari.c
CMS_RecipientInfo_kari_decrypt

Missing ‘OPENSSL_clear_free’
ec�>key = key ;
ec�>k e y l e n = k e y l e n ;

(d) crypto/cms/cms_pwri.c
cms_RecipientInfo_pwri_crypt

Figure 5: A bug in OpenSSL found by FICS based on clustering 1-Cons. ‘ec�>key’ has to be cleansed before a new assignment otherwise it might
lead to an information leak.

bytecount = TIFFGetStrileByteCount ( ... )

bytecountm = _TIFFCastUInt64ToSSize ( ..., bytecount, ... )

if ( bytecountm ... )
return ...

if ( ... && ... bytecountm ... )
bytecountm = ...

return TIFFReadRawStrip1 ( ..., bytecountm, ... )

...

(a) libtiff/tif_read.c
TIFFReadRawStrip

bytecount = TIFFGetStrileByteCount ( ... )

bytecountm = _TIFFCastUInt64ToSSize ( ..., bytecount, ... )

if ( bytecountm ... )
return ...

if ( ... && ... bytecount ... )
bytecount = ...

return TIFFReadRawTile1 ( ..., bytecountm, ... )

...

(b) libtiff/tif_read.c
TIFFReadRawTile

bytecount = TIFFGetStrileByteCount ( ... )

bytecountm = _TIFFCastUInt64ToSSize ( ..., bytecount, ... )

if ( bytecountm ... )
return ...

if ( ... && ... bytecount ... )

return TIFFReadRaw... ( ..., bytecountm, ... )

...

bytecountm = ...

(c) The patch and consistent code for both
TIFFReadRawStrip & TIFFReadRawTile

Figure 6: An inconsistency in LibTIFF found by FICS. The cosine similarity between nodes of the constructs is more than 0.98 while the similarity is
very low if both nodes and edges are considered. By considering whole graph similarity as the first-step clustering, this inconsistency would be missed.

Construct and a non-buggy or patched Construct to
be similar, and therefore, fail to provide useful input to
the second-step clustering. Variations among similar
Constructs include missing some nodes, different
placements of nodes, etc. For example, Figure 6 shows
a detected and fixed bug by FICS in LibTIFF. The reason
for the inconsistency is that there is a mislocated check
in the buggy Construct that significantly changes the
relations between the nodes. If using a standard graph
similarity check, the similarity score between the two
Constructs (Figure 6a and 6c) can be very low (i.e.,
the two Constructs are deemed significantly different).
This is because standard graph similarity checks consider
the differences in both nodes and edges of two graphs.

To make the first-step clustering somewhat coarse-
grained and tolerant of variations among functionally
similar Constructs, we design a customized graph
similarity scoring scheme. We observed that, if edges are
excluded from the similarity comparison, the common
types of variations among similar Constructs no longer

drastically affect the calculation of similarity scores. For
instance, the similarity score computed without consid-
ering edge difference can be close to 98%. In our scoring
scheme (for the first-step clustering only), only node labels
in Constructs (i.e., abstracted LLVM instructions) are
considered and each Construct is embedded into a node
vector (∫ in Figure 3), where the index is the instruction
ID and the value is the number of times the instruction
appears in the graph. This embedding shares some resem-
blance with the bag-of-words technique used in NLP. We
call our embedding bag-of-nodes, which allows for ef-
ficient and variation-tolerant computation of Construct
similarity. Although edges are omitted in this embedding,
nodes usually preserve enough information on the
semantics of a Construct, and therefore, are sufficient
for the purpose of (approximate) functionality clustering.

To quantify the similarity between a pair of Const-
ructs, we calculate the cosine similarity (ª in Figure 3)
between their corresponding bag-of-nodes embeddings.
We choose cosine similarity for its efficiency and its previ-



ous applications for finding similar code [29]. Specifically,
consider the example in Table 1, which shows a stack-
based buffer overflow (CWE121) when the check on data
< 10 is missing. The cosine similarity between the buggy
and the correct Constructs (i.e., full-Conwith data as
the root variable) is calculated based on the bag-of-nodes
embeddings of the Constructs. The computed similarity
score is 0.96, which indicates that the two Constructs

are similar with subtle differences. After computing
cosine similarity for each pair of Constructs, we feed the
pair-wise similarity scores into the clustering algorithm.

The clustering algorithm groups similar Constructs
in a program based on pair-wise similarity scores. Existing
clustering algorithms can be divided into two categories
[26]. Those in the first category require as input an exact
number of expected clusters (e.g., K-means) whereas
those in the second category do not (e.g., DBSCAN and
connected-components). Since the number of Construct
clusters is unknown and may vary significantly across
codebases, we choose one algorithm from the second
category, namely the connected-component algorithm (º
in Figure 3). It is less complex and performs much faster
than other algorithms such as DBSCAN and Affinity
Propagation, based on our tests. This algorithm first
constructs a similarity graph based on the previously
calculated similarity scores. It then forms clusters from
highly connected subgraphs [19].

One important parameter of the clustering algorithm is
the similarity threshold, which can be tuned by FICS users.
Tunning this parameter directly affects the number and
sizes of the clusters output by the algorithm. The higher
the threshold is set, the more clusters are formed and the
smaller those clusters tend to be, and vice versa. Based on
our experiments with a subset of the Juliet Test Suite [3],
we observed that most buggy and patched Constructs

usually have similarity scores higher than 0.95 calculated
on their bag-of-nodes embeddings. However, we also
observed similarity scores as low as 0.7 from some
real bugs and their non-buggy counterparts (see §5.2).
Although one may be tempted to use a low similarity
threshold with the hope of finding more inconsistencies
and bugs, this runs the risk of FICS reporting too many
inconsistencies that are not real bugs. As with many
clustering-based systems, a single similarly threshold
for FICS to perform well on all possible inputs does not
exist. But finding a suitable similarly threshold for a
codebase does not require much knowledge about FICS
design or heavy engineering efforts. We consider the
value range from 0.8 to 0.95 for the similarity threshold
in our evaluation (§5), which can obtain meaningful
inconsistencies while keeping the false positives low.

4.3.2 Inconsistency Clustering

FICS performs a second-step clustering to group
Constructs of each cluster generated from the first-step
clustering. While our bag-of-nodes embedding is suitable
for the coarse-grained clustering, it does not meet the
needs of the second step clustering. This is because it does
not consider edges in Constructs and thus cannot fully
capture the structures of Constructs. For instance, for a
bug caused by a wrong order of operations (CWE666), the
nodes of the buggy and non-buggy Constructs can be
identical (i.e., the same bag-of-nodes embedding), despite
the difference in the order of certain nodes. This and other
edge-based inconsistencies cannot be captured by our
bag-of-nodes embeddings. Therefore, we need a more
precise and detailed graph similarity checking scheme.

Graph isomorphism can be used for graph matching.
However, it is NP-complete and prohibitively expensive
when the number or size of graphs are very big. Other
approaches like graph kernels and graph embedding tech-
niques are more efficient. Both the approaches recursively
decompose graphs into atomic substructures. Graph
kernels define a similarity (aka kernel) function over the
substructures [22] whereas embedding techniques use a
‘skipgram’ model to learn distributed representations [17].

We adopt graph embedding in the second-step cluster-
ing because it can learn embeddings automatically while
graph kernels require handcrafted substructures. Graph
embedding techniques embed either graph substructures
(e.g., nodes [10] and paths [31]) or the entire graph
[18]. Because our goal in this step is to cluster graphs,
not their substructures, we use graph2vec embedding
[18], which was recently proposed and can model both
local and global similarities among graphs. Based on
our experiments, graph2vec achieves similar or better
clustering results compared to the other approaches in
a much more efficient way.

For each cluster of similar Constructs, the similarity
between each pair of Constructs is calculated based on
the graph2vec embeddings (Ω in Figure 3). The similarity
scores are then fed into the clustering algorithm (º in
Figure 3). We use a very high similarity threshold, namely
1 or very close to 1, for the second step clustering, which
needs to be sensitive to subtle differences among similar
Constructs.

4.4 Deviation Analysis and Filtering

Deviation analysis: The output from the two-step
clustering contains similar yet inconsistent Constructs.
However, not all of them are harmful bugs. The deviation
analysis (æ in Figure 3) helps FICS users vet the detected
inconsistencies in order to quickly identify true bugs.



int d a t a = 1 0 ; int i ;
int b u f f e r [ 1 0 ] = { 0 } ;

Embedding alloc... getelem... icmp sge... icmp slt... load... sext... br... call... store...

if ( d a t a >= 0 && data < 10 ) { Correct 1 1 1 1 4 1 2 1 3
b u f f e r [ d a t a ] = 1 ; Buggy 1 1 1 0 3 1 1 1 3
for ( i = 0 ; i < 1 0 ; i ++)

p r i n t I n t L i n e ( b u f f e r [ i ] ) ; }
Cosine Similarity: 0.96609 (i.e.,>95%)

Table 1: Computed cosine similarity between the bag-of-nodes embeddings of the correct and the buggy (inconsistent) Constructs. Bag-of-nodes
embedding in this example is for full-Con with data as the root variable. The condition data < 10 is missing in the buggy code, causing the
embedding value for the instruction icmp slt to be 0. Note that even though only a single statement in C code is missing in this bug, it translates
to multiple missing LLVM IR instructions, thus the different values of load and br in the embeddings.

Inconsistency Type Bug CategoryDeviation
Check

icmp Node NULL Pointer Dereference, Undefined Behavior
Buffer Errors , Integer Overflow

Memory Handling
*free*, *close* Nodes Resource Leak, Double Free
*bzero*, *clear* Nodes Information Leak

Type
trunc, bitcast Nodes Bad Casting

Order
Edge Wrong Order of Operations

Initialization
store, memset Nodes Double Free, Information Leak

Table 2: List of important types of inconsistencies and deviations
that can help detect different types of bugs. Red color refers to LLVM
instruction and orange color refers to function call. ‘*’ here means
Kleene Star in regular expression.

Most bugs are due to missing or extra code fragments,
such as wrong/missing checks (CWE131, CWE190,
CWE253, CWE476, CWE475), missing variable initial-
izations (CWE457), missing important calls like free

or memset (CWE200), or redundant calls (CWE415).
When expressed in a DDG, these bugs appear as a
node deviation from their functionally-similar and
correctly-implemented counterparts. For other bugs, such
as wrong order of operations (CWE666), each manifests
in a DDG as an edge deviation.

We summarize such deviations in Table 2 to guide
and facilitate manual analysis and bug triage. While not
meant to be complete, this list helps human analysts
prioritize the inconsistencies of higher bug potentials.
The inconsistencies that contain such deviations are
highlighted by our system and then provided to analysts.

Filtering: The deviation analysis allows analysts to
focus on high-priority inconsistencies or highly likely
bugs. The filtering step, on the other hand, removes the
inconsistencies that are redundant or likely false. For
example, if a detected inconsistency involves several
missing “if ” conditions, the inconsistency is less likely to
be true or a bug (i.e., developers rarely forget to perform
multiple different checks in a small chunk of code).

The filtering step uses four empirical rules, which are
generic and simple, to reduce or deprioritize false or unim-
portant inconsistencies. (i) In an inconsistency report,
if all the Constructs in the inconsistent clusters

3 over-
3
Inconsistent clusters refer to the result of the 2nd-step clustering

lap, the report is ignored. This overlap usually happens
when a variable propagates to another within a function,
which makes their corresponding Constructs look sim-
ilar. The differences among such similar Constructs in
the same function usually do not represent inconsisten-
cies or bugs. True inconsistencies typically happen across
different functions or compilation units. (ii) If an incon-
sistent cluster contains more than a fixed number (e.g., 2)
of deviating nodes (i.e., nodes in Table 2), the inconsis-
tency is de-prioritized because it is unlikely to be a true
inconsistency (i.e., a single inconsistency rarely involves
many deviations). We note that this rule only applies to
deviating nodes, rather than all nodes in a Construct,
and thus, does not over-filter. For example, this rule is not
triggered when more than 10 lines of code difference exist
in an inconsistent but only two of them are “if ” conditions
(icmp nodes). (iii) If the same inconsistency is found mul-
tiple times, we only report it once. This redundancy occurs
because the system integrates the reports generated using
different granularities and similarity thresholds. (iv) If the
number of inconsistent clusters is bigger than a threshold
(5 in our case), the inconsistencies in these clusters are de-
prioritized because the more inconsistent clusters are iden-
tified, the less likely these clusters represent true inconsis-
tencies (ı.e., the clusters are fragmented and not reliable).

5 Evaluation

In this section, we evaluate FICS by finding answers to
the following questions:

• Q1: How effective is our method at detecting bugs
(§5.2)?

• Q2: Is our method able to find unknown bugs in
well-tested large codebases without requiring heavy
manual validation efforts (§5.3)?

• Q3: What are the non-buggy inconsistencies and
whether developers consider them fix-worthy? (§5.4)

• Q4: How scalable is our approach (§5.5)?

5.1 Testset & Setup

Before discussing the evaluation results, we explain the
codebases/testsets and the setup that we used to perform
the experiments. To investigate the effectiveness of

inside a functionally-similar cluster produced by the 1st-step clustering.



ML-based systems, a testset with ground-truth labels is
needed. Although there are some public datasets [13, 20]
suitable for supervised learning approaches, none of them
were created based on code inconsistencies.

iBench: Since no testset for evaluating the effective-
ness of inconsistency detection exists, we created a
testset/benchmark, named iBench, based on 22 known
bugs in real software. While impossible to find all
consistency-induced bugs in all software, our manual
search yield 22 reported bugs in five different codebases,
including several Linux drivers, OpenSSL, libzip, and
mbedtls. The selected bugs span nine distinct categories,
as shown in the first two columns of Table 4. Using
iBench, we performed a controlled experiment to answer
Q1. In this experiment (§5.2), we evaluated FICS on
iBench and compared it with the existing approaches.

Five codebases of varying sizes: To answer Q2-Q4, we
perform a separate experiment (§5.3), where we evaluated
FICS on five real codebases in their entirety. This exper-
iment examines if FICS can find previously unknown
inconsistency-inducted bugs in both small and large code-
bases. Also, it examines how many of the unknown bugs
found by our system can be detected by the existing tools.

The five codebases used in this experiment are popular
open-source projects of different kinds and sizes. Some
are widely considered as well-tested and high-quality.
Table 3 shows the selected codebases, their descriptions,
and the numbers of contributors. The sizes of the
codebases are shown in Table 5, which vary from small
(e.g., LibTIFF with 38 compilation units and 6.9K SLoC)
to large (e.g., QEMU with more than 2,000 compilation
units and 1.7M SLoC). These codebases also represent a
good mix of libraries, applications, and system software.

We compared FICS with the related bug detection
techniques in both experiments. Although there are more
candidates to compare, the three detectors we choose,
namely, APIsan [32], Crix [15], and LRSan [24], are
inconsistency-related, the most recent, and publicly
available. While APIsan and Crix run on the testing
codebases without any additional adjustment, we had
to slightly modify LRSan. This is because LRSan was
originally designed to find bugs in the Linux kernel and
it relies on the error codes specific to the kernel to detect
security checks. As a simple tweak, we changed LRSan
to treat negative return values as error codes.

5.2 Controlled experiment

To measure the performance of FICS’s two-step clustering
approach and its inconsistency detection, we conducted
a controlled experiment on iBench.

When using FICS to detect inconsistencies and bugs,

Name Commit #Contrib. Description
QEMU 7a5853c 1,068 Emulator/Virtualizer
OpenSSL a75be9f 448 TLS/SSL library
wolfSSL c26cb53 57 TLS/SSL Library
OpenSSH c2fa53c 42 SSH Tool
LibTIFF 19f6b70 38 TIFF Library

Table 3: Test codebases sorted by the number of contributors (‘Contrib.’
column). The ‘Commit’ column indicates the last commit of the
codebase, analyzed by our tool.

one can adjust two parameters to achieve the best results:
the granularity (or Construct size) and the Construct
similarity threshold for the first-step clustering. De-
pending on the nature of bugs and codebases, different
combinations of these two parameters may result in
different detection results.

Based on our experiments, we found that two particular
configurations of Construct size, namely 1-Con and fu-
ll-Con, generally perform well in practice. We evaluated
both in our experiment. We used four different similarity
thresholds in our evaluation: 80%, 85%, 90%, and 95%.
If the threshold is set too low, the similarity clusters may
become too bigger, which can in turn cause too many
falsely detected similar code snippets (see Appendix A).

Comparison: As shown in Table 4, using iBench, FICS
reported 82 inconsistency cases after filtering 410 reports.
We compared FICS with the three related bug detectors.
FICS achieved the highest true positive rate (86%) and
significantly outperformed the second best (APIsan at
27%). FICS missed one bug in the ‘wrong value’ category
because this bug is caused by a constant value but FICS
removes literals in the Construct abstraction step as a
design choice. FICS also missed two other bugs, one in
‘missing free memory’ and one in ‘missing return value
check’. The former was not correctly clustered with its
similar code and the latter was mistakenly filtered out by
FICS. As for the false positive rate, Crix scored the best at
0%, although it has a very high false negative rate (91%).
FICS has the second lowest false positive rate. Although
FICS’s false positive rate is much lower than that of the
related works, including APISan and LRSan, the absolute
number (76%) may still seem high. We note that it should
not severely impact the usefulness of our tool. This is be-
cause (i) a report produced by FICS does not require heavy
manual effort to validate (see §5.3.1), and (ii) the filtering
step can be expanded to further reduce false positives.

The focus of Crix and LRSan is only on detecting
missing checks. They were not designed to detect other
types of bugs or inconsistencies, such as bad casting,
memory and information leak, uninitialized variables, etc.
APIsan aims to detect API misuses. Three out of four bugs
found by APIsan are missing/incorrect checks on function
return values. APIsan cannot detect the following types



of bugs that FICS can: (1) no API calls are involved in a
bug (e.g., bad casting or an uninitialized variable); (2) the
buggy code uses an API but the non-buggy code does not,
or the opposite; (3) no majority exists to determine the
non-buggy code. Similar to APIsan, Crix uses majority
voting to capture an inconsistency. Therefore, neither can
detect one-to-one inconsistencies.

Overall, the result shows that FICS is highly effective
at detecting inconsistency-induced bugs and its detection
is agnostic to bug types. In contrast, the three bug
detectors evaluated in this experiment target only specific
types of bugs and suffer from either high false positives
or low true positives when being used for detecting
inconsistency-induced bugs in general.

off-by-one errors: As discussed in §4, for mitigating
false positives, FICS ignores literals in the similarity and
inconsistency analysis. However, doing so may (mildly)
limit FICS’s ability to detect certain bugs, such as off-

by-one errors, which differ from the non-buggy/patched
counterparts sometimes only in literals. An off-by-one
error occurs when the size of an array (or similar data
structure) is miscalculated by one, usually causing a loop
to iterate one more/less time than needed.

We conducted an experiment to understand the potential
negative impact of forgoing literals in our code abstraction.
We randomly selected 11 CVEs and checked if FICS can
detect them (see Appendix B). While the root cause for all
the bugs is the same (a miscalculated boundary condition),
interestingly, developers patched the bugs in two different
ways. Among the 11 CVEs, only four of them were fixed
by adding or deducting an integer value in the condition.
In such cases, even if the similar correct code exists, our ap-
proach would miss the bugs. On the other hand, seven out
of the 11 bugs were fixed in other ways without changing
any literals (e.g., replacing < with  or adding a missing
check). In these cases, which are more common, the dif-
ference between the buggy and non-buggy code does not
lie in literals. Therefore, forgoing literals in our abstrac-
tion does not quite hurt FICS’s bug detection ability while
greatly mitigating false positives caused by literals.

5.3 Discovered Unknown Bugs

In a second experiment, we applied FICS on the five open-
source software of different kinds and sizes (Table 3) to dis-
cover new bugs. For simplicity, we set Construct granu-
larity to 1-Con and full-Con and the similarity threshold
to 95%. We chose 95% as the similarity threshold for this
experiment because it generates the least amount of bug
reports, which need to be manually validated for this evalu-
ation. To further reduce the manual efforts required in this
evaluation, we focused on reports in two major inconsis-

Total bugs FICS APIsan LRSan Crix
Total Number of reports 82 100 5 2
Memory leak 6 5 2 0 0
Information leak 2 2 0 0 0
Bad casting 2 2 0 0 0
Missing argument check 3 3 0 0 1
Deadlock 1 1 1 0 0
Mislocated check 1 1 0 0 0
Missing return value check 4 3 2 0 1
Uninitialized Variable 2 2 0 0 0
Wrong value 1 0 1 0 0
True bugs 22 19 6 0 2
TP rate 86% 27% 0% 9%
FP rate 76% 94% 100% 0%

Table 4: Bug detection results on iBench: a comparison with three
related detectors

# Bitcode # Functions # Construct
Name SLoC Files DDG full-Con 1-Con

QEMU 1.7M 2,120 53,625 207,886 419,982
OpenSSL 517K 690 9,802 32,056 75,787
wolfSSL 396K 44 1,519 8,014 23,029
OpenSSH 93K 228 2,047 11,810 33,031
LibTIFF 69K 84 1,245 9,189 28,537

Table 5: Statistics regarding the analyzed codebases. The codebases
have been compiled with default compile options and for Linux platform
so it might happen that some C files are not compiled and consequently
their corresponding bitcodes cannot be generated.

tency categories, namely check and call inconsistencies,
which cause many bugs [15, 32] in the real world. Table 5
shows the statistics on the codebases used in this experi-
ment, including the numbers of source lines (SLoC), bit-
code files (compilation units), functions, and constructs.

5.3.1 Result

As shown in Table 6, after the filtering step (§4.4),
FICS reported a total of 1,821 code inconsistencies. We
manually vetted all of them and found 218 to be true or
valid inconsistencies. Among them, 95 are code smells
(§5.4) and 121 are potential bugs (verified by ourselves).

The manual vetting effort is not as heavy as required
to validate results from many other static analyzers. The
ease of manual validation of FICS’s reports is largely due
to the presence of both the consistent and the inconsistent
Constructs and the highlighted differences. Showing
this contrast when reporting a bug helps developers
quickly determine if the bug is valid or harmful. On
average, our testers, having little familiarity with the
codebases, took less than two minutes to validate an
inconsistency report. They used less than 10 hours to an-
alyze all of the 310 reported inconsistencies in OpenSSL.
We expect original developers to take even less time.

So far we have reported 36 of the 121 potential bugs
to original developers and received 22 confirmations
(the other reports are still pending). The confirmed bugs
have been patched either by our pull requests or by the
developers themselves based on our reports. Some bugs
have more obvious security implications than others.



# Reported inconsistencies Valid Code Potential Confirmed
Name Total Check + Call (Sum) After Filtering Cases Smells Bugs Bugs
QEMU 12,320 3,907 + 3,170 (7,077) 1,206 79 26 53 4
OpenSSL 2,419 1,158 + 347 (1,505) 310 59 24 35 9
wolfSSL 586 296 + 124 (420) 91 23 18 5 3
OpenSSH 1,063 509 + 208 (717) 121 29 18 11 1
LibTIFF 925 390 + 156 (546) 93 28 9 19 5
Total 17,313 6,260 + 4,005 (10,265) 1,821 218 95 121 22

Table 6: FICS detected 218 valid inconsistencies, including 121 potential bugs (harmful inconsistencies) and 95 code smells (harmless inconsistencies).
Among the potential bugs, 22 have been confirmed and fixed by developers so far. Analyzing each report takes no more than 2 minutes.

5.3.2 Case Studies & Security Impact

Missing Checks: About 70% of the detected bugs are
caused by missing checks. This matches the findings
reported by other researchers [15] that missing checks are
a fairly prevalent class of bugs. Two of the missing checks
in OpenSSL and one in wolfSSL may lead to NULL derefer-
ence. Others have different security consequences such as
undefined behaviors, crashes, or malfunctioning. Two of
the bugs in wolfSSL, missing checks on the input file size,
may cause denial of service when exploited by an attacker
using a large file. Interestingly, inspired by our report, the
developers added sanity checks to 13 other places in the
codebase, resulting a major patch of 250 lines of code.

Memory/Information Leak: Another common type of
inconsistencies is call deviations, including missing or
wrong use of critical function calls, such as those used for
freeing memory. Two main consequences of such bugs are:
(1) memory leak if memory is not freed after allocation;
and (2) information leak if sensitive information like
encryption keys are not cleared in memory after use. 20%
of the confirmed bugs, including two in OpenSSL and
one in OpenSSH, belong to this category.

Other Bugs: The three remaining bugs (i.e., 10%) are
also related to check or call inconsistencies. One of them
is a bad casting in a condition check and another one is an
uninitialized variable. However, their security impact is
not immediately clear. Without an in-depth understanding
of the codebases, we were unable to manually confirm if
these bugs can directly lead to any security consequence
or be exploited by attackers. Nonetheless, in general,
bad castings could cause type confusion and in turn
integer overflows or logical bugs. Uninitialized variables
could lead to information leak or logical errors. The
last bug does not have any security implication but it
negatively affects the performance: the much heavier
OPENSSL_clear_free is used when OPENSSL_free

suffices.
5.3.3 Comparison

In this experiment, we again compare FICS with the three
related bug detectors, APIsan, LRSan, and Crix. Unlike
the previous comparison, which was based on a controlled

FICS APIsan LRSan Crix
#Rep #B #Rep #B #Rep #B #Rep #B

QEMU 1,206 4 5,805 0 129 0 98 0
OpenSSL 310 9 7,874 0 30 0 54 1
wolfSSL 91 3 1,049 1 62 0 62 0
OpenSSH 121 1 2,740 0 0 0 5 0
LibTIFF 93 5 645 3 12 1 3 0

Table 7: Comparison between FICS, APIsan, LRSan, and Crix on bug de-
tection capability. FICS outperforms its competitors while not reporting
too many potential cases. #Rep: Number of reports, #B: Number of bugs.

experiment and focused on true/false positive rate, this
comparison aims to show how many of the FICS-detected
bugs can be caught by the three existing detectors. We
used the 22 developer-confirmed bugs as the ground truth
and applied the three detectors to the codebases. Table
7 shows the number of bugs reported (#Reports) by each
detector as well as how many bugs in the ground truth were
detected (#Bugs). APIsan produced more than 18,000
bug reports, which include only four of the 22 confirmed
bugs. With much fewer bug reports produced, LRSan and
Crix each found only one of the 22 bugs. There are two
primary reasons for the three detectors to have much lower
detection rates than FICS. First, all of them target only a
specific class of inconsistencies or bugs, namely missing
checks or API misuse. Second, two of them are based
on majority voting and they cannot detect one-to-one
inconsistencies. This result echos the advantages of FICS,
in particular, its bug-type-agnostic detection.

5.4 Code Smells and False Inconsistencies

We studied the detected inconsistencies that are not true
bugs. There are two categories of them: (1) true yet
seemingly harmless inconsistencies; and (2) false incon-
sistencies. The cases in the first category are essentially
code smells, a term used in the software engineering
community [9] to refer to any subtle pattern in code that
may indicate or become a problem, broadly defined. We
note that, despite the implicit or little security impact, code
smells detected by FICS are true inconsistencies and still
worth fixing (examples discussed shortly). The cases in
the second categories are falsely detected inconsistencies.

Table 6 shows that 95 of the reported inconsistencies
are code smells and valid inconsistencies. Fixing them
can improve code quality. Moreover, such code smells



may help developers find deeper problems in their code.
For example, we reported one of the detected code smells,
a check inconsistency, to QEMU developers. During
the investigation of the report, they found and fixed 6
use-after-free bugs [2].

Redundant code is a common type of code smell
detected in our experiment, especially extra sanity checks.
The main reason for such inconsistencies is the lack
of consensus among developers as to where/when to
perform certain checks. For example, some developers
check the input parameters inside a function while others
perform the same check when they call the function. We
reported several cases like this. While some developers
removed the redundant checks for performance concerns,
others preferred to keep the redundant sanity checks for
the peace of mind. Either way, revealing such problems
helped developers define a uniform API specification to
prevent inconsistencies in API usages.

Another common type of code smell detected is the
failure to use existing utility functions. We observed
several cases where the inconsistent code performs
certain operations by itself instead of calling an existing
utility function that does the same. Although such
inconsistencies may not have direct security implications,
they may give rise to bugs when an update to a utility
function cannot propagate to the inline counterparts.

Unlike code smells, false inconsistencies occur when
FICSmistakenly marks perfectly fine code as inconsistent.
For example, when FICS learns from several similar
Constructs that a new value is assigned to a pointer
only after the pointer has been freed. FICS may detect
another similar Construct to be inconsistent if it fails
to free a pointer before assigning a value to the pointer.
However, the “inconsistent” Construct in this case
assigns a value to an uninitialized (or null) pointer, which
should not be freed in advance. FICS may not be able
to capture such subtle differences in semantics and thus
report false inconsistencies. Due to the lack of ground
truth, we were unable to determine the exact number of
false inconsistencies in this experiment. However, based
on our sampling, the rate matches the false positive rate
reported in the controlled experiment (§5.2).

5.5 Performance

We run the experiments on a 20-core workstation with
200 GB of RAM. The entire analysis process finishes
within five hours for three out of five codebases. The two
outliers are OpenSSL and QEMU, taking 12 and 72 hours
to analyze, respectively (see Appendix C). In general,
a codebase with a larger number of compilation units
require longer time for analysis. As for the time spent on
individual analysis steps, the second-step clustering is

the most time-consuming step, primarily due to the graph
embedding generation.

6 Limitations

FICS cannot, and is not designed to, detect buggy Const-
ructs that do not have functionally similar and non-buggy
counterparts in the same codebase. Our approach learns
from the codebase itself. If the size of the codebase is too
small, the system is less likely to be able to find enough
similar Constructsand thus inconsistencies and bugs.
We note that focusing on large codebases for bug detection
is of significant practical value. Moreover, the unique ad-
vantage of our approach is the ability to learn from a code-
base without prior knowledge about bug patterns or types.

Certain bugs (e.g., one-liners) may be too small to
be captured by FICS because the smallest Construct
granularity contains a full basic block and can still be
too big for these tiny bugs (i.e., the functional similarity
disappears when viewed in large Constructs).

Our research prototype currently does not support
C++ because the DDG extraction step does not handle
C++-specific instructions such as those related to vectors
or exceptions. Moreover, our current prototype cannot
analyze extremely large codebases (e.g., the Linux
kernel). This limitation is due to the very large RAM
(>200GB) needed for performing the graph-based code
similarity comparison on codebases with more than
16,000 compilation units.

7 Conclusion

In this paper, we presented FICS, the first bug-generic,
ML-based bug detection system that learns from the to-
be-checked codebase and identifies code inconsistencies
as bug indicators. Unlike many previous works, our ap-
proach does not require external datasets for training nor
is limited to certain types of bugs. FICS features several
novel concepts and techniques, including Constructs as
the suitable code granularity for similarity/inconsistency
comparison, the two-step clustering, and the two graph
embedding schemes. These techniques together make
FICS effective and scalable to large codebases. We applied
FICS to five popular, well-tested open source projects
and found 22 real, previously unknown bugs. All the new
bugs have been confirmed or fixed by the developers. We
therefore conclude that FICS is a practical system and can
be directly adopted by developers or testers to find bugs in
their code with a minimal amount of manual assistance.
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Appendix A Threshold Breakdown

Figure 7 shows the number of inconsistency reports and
the number of confirmed bugs produced by FICS under
each configuration combination. Based on this result, the
higher the similarity threshold is set, the fewer similar
Constructs are detected and fewer inconsistencies
reported, except for the threshold of 80%. This outlier
is caused by the the filtering step, which removed many
large and false clusters. However, if the threshold is set
too high, it is possible that few similar Constructs can
be detected and thus some true inconsistencies and bugs
may be missed. In practice, we combine the results under
the four thresholds and remove the duplicates during the
filtering step. As for the Construct size/granularity con-
figurations, the figure suggests that full-Con performs
better than 1-Con in terms of bugs detected. This result
is expected because 1-Con only captures the data flow of
a variable within a single basic block. That said, 1-Con
granularity still helps uncover some bugs that full-Con
cannot, such as those manifest only in a single basic block.

Appendix B Off-by-one CVEs

Table 8 presents the 11 off-by-one CVEs in open source

C codebases. Seven out of the 11 bugs have been patched
without changing any integer literals and the rest needs
literal adjustments. This explains that eliminating integer
literals in the abstraction step would not harm our
detection capability in the majority of cases.
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Figure 7: Breakdown of the number of reports as well as the number
of bugs.

# CVE Patch
Detection is NOT affected by removing integer literals

1 CVE-2020-7044 Replace < with  in:
i f (in_ptr�>max_entry< in_type)

2 CVE-2018-7329 Replace  with < in:
f or(i=1;i<= item_count;i++)

3 CVE-2014-9029 Replace > with � in:
i f (JAS_CAST (int,coc�>compno)>dec�>numcomps)

4 CVE-2014-7937 Fix variable name comparison in:
i f (i<vr�> ptns_to_read)

5 CVE-2013-7108 Remove the following redundant statement:
x++

6 CVE-2011-5244 Add a missing check (&&idx<MAX_NAME) in:
while(ch!=EOF&&ch!= lineterm)

7 CVE-2007-4091 Add the following missing check:
i f (l>=sizeo f ( f name))
Detection is affected by removing integer literals

1 CVE-2019-13306 Change 1 to 2 in:
i f ((q�pixels+extent+1)>=sizeo f (pixels))

2 CVE-2016-10145 Copy MaxTextExtent�1 size in:
strncpy(clone_in f o�>magick,magic_in f o�>name,MaxTextExtent);

3 CVE-2014-2386 Compare with MAX_INPUT _BUFFER�1 in:
i f (strlen(getenv(”QUERY _ST RING”))>MAX_INPUT _BUFFER)

4 CVE-2006-7221 Remove 1 in:
entry�>d_name[MAXNAMLEN+1]=0 \00

Table 8: List of the 11 analyzed off-by-one CVEs.

Appendix C Performance Overhead

Figure 8 shows the time FICS spent at each step in
the analysis pipeline when analyzing the codebases
mentioned in §5.1.

We compared FICS, in terms of the running time, with
APIsan, LRSan, and Crix (see Table 9). APIsan is more
computationally expensive than FICS partly because of
its use of symbolic execution. Crix and LRSan are pretty
fast and finish their analysis in a few seconds to minutes.
This is because their analysis is confined to only missing

Figure 8: Execution time for different steps of FICS. The most
time-consuming step is the 2nd-step clustering.

checks on a limited set of critical variables. Although
FICS takes much longer time to analyze a codebase than
LRSan and Crix, FICS can detect a far broader range of
bugs and code inconsistences. It is not limited to just miss-
ing checks on a small set of selected variables as LRSan
and Crix are. Furthermore, for an in-depth static analyzer
like FICS, spending several or tens of hours on a large
codebase is normal and considered acceptable in practice.

It is also worth noting that FICS only needs to perform
a full-round of analysis on a codebase once. Its incon-
sistency detection is by nature incremental: after having
analyzed a codebase, FICS can be applied to newly added
or changed code without re-analyzing the entire codebase.
Furthermore, each step in FICS’s analysis pipeline is
multi-threaded, which allows for further performance
improvement by increasing parallelism.

FICS APIsan LRSan Crix
QEMU 72 (h) 96 (h) 6 (m) 3 (m)
OpenSSL 12 (h) 92 (h) 34 (s) 28 (s)
wolfSSL 2 (h) 7 (h) 30 (s) 27 (s)
OpenSSH 4 (h) 44 (h) 12 (s) 14 (s)
LibTIFF 3 (h) 18 (h) 1 (m) 23 (s)

Table 9: Performance comparison with APIsan, LRSan, and Crix.


