
From Zygote to Morula:
Fortifying Weakened ASLR on Android

Byoungyoung Lee†, Long Lu‡, Tielei Wang†, Taesoo Kim∗, and Wenke Lee†

†School of Computer Science, Georgia Institute of Technology
‡Department of Computer Science, Stony Brook University

∗MIT CSAIL

In embryology, the morula is produced by the
rapid division of the zygote cell; in Android, each
application process is a fork of the Zygote process.

Abstract—There have been many research efforts to secure
Android applications and the high-level system mechanisms. The
low-level operating system designs have been overlooked partially
due to the belief that security issues at this level are similar to
those on Linux, which are well-studied. However, we identify that
certain Android modifications are at odds with security and result
in serious vulnerabilities that need to be addressed immediately.

In this paper, we analyze the Zygote process creation model,
an Android operating system design for speeding up application
launches. Zygote weakens Address Space Layout Randomization
(ASLR) because all application processes are created with largely
identical memory layouts. We design both remote and local
attacks capable of bypassing the weakened ASLR and executing
return-oriented programming on Android. We demonstrate the
attacks using real applications, such as the Chrome Browser and
VLC Media Player. Further, we design and implement Morula,
a secure replacement for Zygote. Morula introduces a small
amount of code to the Android operating system and can be
easily adopted by device vendors. Our evaluation shows that,
compared to Zygote, Morula incurs a 13 MB memory increase
for each running application but allows each Android process
to have an individually randomized memory layout and even a
slightly shorter average launch time.

I. INTRODUCTION

With over 1.5 million devices activated daily in 2013 [33],
Android now owns the largest mobile user population around
the globe. However, as past experiences have shown, once a
piece of software or platform gains significant popularity, it
becomes a hot target for financially or politically motivated at-
tackers. Despite the tremendous efforts by the security research
community in reinforcing the security of Android, so far only
a few categories of security issues pertaining to Android have
been thoroughly studied and addressed. Most of these issues
are due to the vulnerable applications and specific to the high-
level design concepts adopted in Android, such as the widely
debated permission model.

In this paper, we describe a new Android security threat and
propose a countermeasure. Unlike previous studies, this threat
is enabled by a low-level design inside the Android operating
system. The design was intended to improve the responsiveness

of applications at launch-time, but it adversely affects the ef-
fectiveness of Address Space Layout Randomization (ASLR).
The root cause of the new threat lies in the core routine
that each application process goes through when created in
Android. Distributed in bytecode form, Android apps rely
on the Dalvik Virtual Machine (DVM) for interpretation and
runtime support. However, launching a new DVM instance
for each new app process can be both time- and resource-
consuming. Given the severe constraints of CPU power and
memory space on the early generation of mobile devices,
Android designers chose to spawn every app process by
forking a master process, the Zygote process, which is created
at device boot-time and contains a full DVM instance with
frequently used classes preloaded. Zygote effectively shortens
apps’ launch-time. However, a side effect of this long-existing
design—all app processes running on a device share a largely
identical memory layout inherited from Zygote—poses a great
security threat to Android’s recently adopted ASLR [22].

ASLR, when properly implemented, loads the code and
data of a program into random memory locations such that
the process memory layout cannot be deterministically inferred
from other executions of the same program or from other co-
located processes using the same shared libraries. However,
the Zygote process creation model indirectly causes two types
of memory layout sharing on Android, which undermine the
effectiveness of ASLR: 1) the code of an app is always loaded
at the exact same memory location across different runs even
when ASLR is present; and more alarmingly, 2) all running
apps inherit the commonly used libraries from the Zygote
process (including the libc library) and thus share the same
virtual memory mappings of these libraries, which represent a
total of 27 MB of executable code in memory.

Both types of memory layout sharing (or leakage) are found
on all versions of Android to date. These memory leakages
enable attackers to easily bypass ASLR, exposing Android
apps to critical attacks such as return-oriented programming
(ROP). We identify not only local but also remote attack
vectors, which obviate the common need for a pre-installed
app to carry out attacks on Android devices. By launching
attacks at popular apps, including the Chrome browser and
VLC media player, we demonstrate in Section III the critical
and realistic nature of this threat. It is also worth noting that
we found similar issues in the Chromium OS and Chrome
Browser for desktops. For simplicity, this paper only discusses
the issues in the context of Android.

Beyond the identification of this critical threat, this paper
also proposes a simple and effective countermeasure, namely

Morula, which is implemented via a small modification to
the Android OS. Morula eliminates the dangerously high
predictability of the memory layout in Android by allowing
processes to have individually randomized memory layouts. An
intuitive way to carry out this straightforward idea is to aban-
don the Zygote process and create each application process
from scratch. In this case, the dependent libraries, application
code, and data are loaded into freshly allocated memory
regions each time a process is being created, and therefore the
existing ASLR in Android is able to independently randomize
the memory layout for each process. However, this intuitive
approach (requiring a cold start for each application) can incur
a prohibitive performance overhead that prolongs the average
app launch time by more than 3.5 seconds. In comparison,
Morula allows Android ASLR to achieve the same level of
security and shows a slightly shorter average launch time.
The core idea of Morula is to adaptively maintain a pool of
Zygote processes with distinct memory layouts (i.e., Morula
processes), so that when an app is about to start, a unique
Morula instance is available as a one-time and pre-initialized
process template in which the app can be loaded. Creating
and initializing the Morula processes in advance moves the
time-consuming operations (e.g., library and class loading)
out of the time-critical app launching phase and consequently
reduces the app launch time. We also devise two optimization
strategies: on-demand loading and selective randomization,
to further limit Morula’s impact on app responsiveness and
system memory usages.

We have built a prototype of Morula on Android 4.2 and
evaluated its effectiveness and performance overheads. When
Morula is in use, an attacker can no longer bypass Android
ASLR with a single attempt; rather, they have to try, on
average, a minimum of 18,000 times. Moreover, Morula meets,
and sometimes exceeds, its performance goal of keeping app
launches as fast as when Zygote is used. However, Morula
incurs an increase of 13.7 MB memory usage per running app,
as a trade-off for the improved security and optimized app
responsiveness. Morula imposes no obvious overhead to other
resources, including battery power.

In addition to identifying a new threat and proposing a
countermeasure, this paper also conveys an important message:
the modifications and extensions made to Linux by Android
and other emerging OSes can open new and unique attack
surfaces. Some feature- or performance- oriented customiza-
tions do interfere or even break existing security mechanisms.
Therefore, the new designs incorporated by these OSes need
careful security scrutiny. This message contradicts the widely
held belief that the security of the low-level Android OS is the
same as the security of Linux (because Linux is the OS core
of Android).

To summarize, our contributions are as follows:

• Leveraging Android’s weakened ASLR, we devised
two realistic attacks on real apps, which break ASLR
and achieve ROP on current Android systems.

• We designed Morula as a practical countermeasure and
implemented it as a small and backward-compatible
extension to the Android OS for easy adoption.

• We conducted thorough evaluations of Morula: mea-
suring its enhancement on ASLR and analyzing its

overheads in terms of app launch delays, memory use,
battery life, etc.

The rest of the paper continues as follows. Section II
provides the necessary background information about the new
threat and our solution. We discuss the details about the threat
and illustrate the possible attack scenarios in Section III.
Morula’s design and implementation is explained in Sec-
tion IV, followed by an evaluation in Section V. We then dis-
cuss implications and limitations in Section VI, and compare
the related work in Section VII. Section VIII concludes the
paper.

II. BACKGROUND

A. App Process Creation on Android

Android inherits its operating system core from Linux.
To overcome the unique constraints facing mobile platforms
and enable new mobile-specific features, Android’s design
introduced a new middleware layer on top of traditional Linux
and customized the designs of several system management
components within Linux. Among these customizations is the
Zygote process creation model. At the time of its introduction,
Zygote represented a reasonable design choice for improving
responsiveness and performance of apps, but we find the design
conflicts with ASLR, the critical security mechanism recently
adopted by Android. Next we provide the background knowl-
edge on the Zygote process and other factors that contribute
to the root cause of the new security threat.

Android apps are packaged in Dalvik bytecode form and
rely on the Dalvik Virtual Machine (DVM) for interpretation
in runtime. Compiling apps into bytecode for distribution nat-
urally brings cross-platform compatibility to Android. More-
over, compared with native code, bytecode generally produces
smaller executable files and guarantees better runtime security,
which is favorable to mobile devices. However, similar to
other interpretation-based execution, Android’s bytecode-based
apps can suffer from the performance overhead incurred by
the virtual machine during runtime as well as launch-time.
To speed up the execution of bytecode, DVM prioritized
performance in its design. One example is the adoption of just-
in-time compilation at a very early stage in its development.

To improve app launch-time performance, Android em-
ploys the Zygote process creation model to avoid the long de-
lay that every app would otherwise have to undergo (i.e., wait-
ing for a fresh DVM instance to be created). Instead of
repeating the creation and initialization of DVM for each app,
Android does so only once during OS boot-time and keeps
the resulting DVM instance as a template process, namely
the Zygote process, from which all app processes will be
“forked.” The Zygote process not only hosts an initialized
DVM instance but also loads a large pool of commonly used
classes and libraries. As child processes of Zygote, every app
inherits the established process context without performing the
initialization themselves, and thus takes a significantly reduced
amount of time to start. Zygote also enables a system-wide
sharing of the memory pages that contain the preloaded code
and data, reducing global memory usage. It is also worth noting
that Zygote-like process creation and class preloading is not
only seen on Android, but also used by the Chrome browser
and Chromium OS.

Init (pid=1)

Zygote

AM

Music

Browser

① request
 new app

② fork()

…

Shared libraries③ warm-init

libc.so
libdvm.so

libssl.so

④ specialize

(e.g.,) ...

Fig. 1. Zygote process creation model with memory layout representations
when launching a browser app. AM represents Activity Manager. The gray
region displays a snapshot of the Android’s address space layouts for running
apps, directly inherited from the Zygote process; each pattern represents a
shared library, such as libc.so or libssl.so, which is located identically
among all running apps.

Figure 1 illustrates how Zygote assists with creating a
new application process. Upon receiving an application launch
request, the Activity Manager in the Android Runtime signals
the Zygote process through an IPC socket (À). The latter
then invokes the fork() system call, creating a new process
to host the app (Á). Since the DVM instance is already
created and loaded with the common libraries by the parent
process, the forked child directly proceeds to the warm-init
stage, where only a few initializations that cannot be done in
advance are completed (Â). As the final step of the app launch
phase, namely specialization, the forked process loads
the actual app per the information passed from the Activity
Manager (Ã). The UID and GID are set at this time, marking
the beginning of app-specific security enforcement. Control
is then handed over to the application code via a call to the
main() method of the Activity Thread.

While reducing the app launch-time delay significantly, the
Zygote process creation model poses an obvious side effect to
all app processes: as the forked children of Zygote, they all
end up sharing not only the common memory content but also
the same memory layout. Figure 1 also shows that the shared
system libraries are loaded at the same memory locations
across different processes. This side effect is by no means
harmful by itself but improves the system-wide memory space
efficiency. However, the nearly identical memory layout in all
processes can be leveraged by an attacker, who, knowing the
code addresses in one app can bypass ASLR and launch return-
oriented programming attacks against any vulnerable app on
the same device1. The severity of this threat is elevated by
the fact that native code is commonly used in many popular
and important apps, each of which heavily relies on native
code components for rendering HTML, playing media, accel-
erating graphics, etc., and such code is historically known for
being prone to memory corruptions and address information
leakages.

B. Address Space Layout Randomization on Android

ASLR is an attack mitigation technique used by all major
commercial operating systems today. It allocates memory

1Although the memory layout sharing issue was previously known, it was
not considered to be harmful to ASLR as it was seemingly difficult for
attackers to take advantage of this issue [28, 31]. However, we found that
this can be easily abused, even in popular Android apps (see Section III).

regions for both code and data at nearly random locations,
making it statistically difficult to predict the memory address
of any executable code and writable data. Therefore, it can
significantly lower the chance of locating code gadgets in
memory, without which return-oriented programming attacks
cannot succeed. Although a number of evasion techniques have
emerged, most of them require a particular app to leak its
address information and have an additional memory corruption
vulnerability at the same time, which is a difficult requirement
to satisfy. In reality, ASLR, along with data execution preven-
tion, forms today’s most effective and practical defense against
a broad range of control-flow hijacking attacks.

Android started supporting ASLR only recently, after the
OS had experienced a remarkable growth in user population
and seen an increasing demand for better security. Despite apps
being mainly written in a strong-type language, memory leaks
and control-flow hijacking attacks are still more than likely
to happen on Android, as shown by the continuous stream
of new rooting exploits and vulnerability disclosures [1, 3].
This is partially because of the large amount of native code
executing inside every app process. First, Android allows
apps that are built with NDK (Native Development Kit) to
link native libraries and invoke functions in such libraries
through JNI-like interfaces. Apps with complex features, high
performance requirements, and legacy codebase tend to have
heavy dependence on native code, including many popular
apps, such as browsers, media players, games, etc. Second,
the runtime libraries and the DVM are implemented in C/C++
and run natively inside app processes without any memory
safety assurance. Native code from these two sources, loaded
into the same process as the rest of the app, represents a large
attack surface, which would have been left exposed if ASLR
was not supported or was bypassed.

The adoption of ASLR in Android took several version
iterations to complete [32]. Android 4.0 was the major upgrade
that first introduced ASLR to the mobile OS. The scope at that
time only covered the shared libraries shipped with the OS,
such as libbionic (Android’s implementation of libc).
Therefore, only these libraries were loaded into randomly al-
located memory locations in each process, whereas other code
that may also be used as sources for mining ROP gadgets, such
as system executables and apps’ native libraries, always re-
mained at the same memory location when loaded, creating an
easy way to bypass ASLR. As Android added support for PIE
(Position Independent Executable) in Android 4.1 a year later,
its ASLR finally expanded to cover the remaining libraries, the
dynamic linker, and all other executables compiled with the
PIE flag. The heap space was also randomized, marking the
end of a complete port of ASLR from Linux to Android [22]
and winning praise from the security community [17].

Although a large amount of effort was spent to fully
incorporate ASLR to Android, unfortunately, the effort failed
to include a careful examination of the existing system designs
that could cause conflicts with ASLR. In the next section, we
will explain these in detail: how the Zygote process creation
model—a design choice made to boost app performance—can
significantly reduce the effectiveness of ASLR and even allow
attackers to bypass the critical security mechanism.

III. EXPLOITING ANDROID’S ASLR

The effectiveness of ASLR in mitigating control-flow hi-
jacking attacks hinges on the fact that attackers possess no
knowledge about the memory layout of a target process and
have no better way to gain such knowledge than brute force.
Naturally, the evasion efforts in various types of OSes so
far have all focused on defeating the protection by either
stealing the secretive memory layout information through
information leaks and side channels [25], or brute forcing
on those platforms that cannot randomize memory allocations
with enough entropy [39]. However, either direction is by
no means easy to pursue; exploitable vulnerabilities that leak
memory address information are fairly hard to come by, and
a single failure on brute force attempts often results in an
application crash that is easily detectable by users. Therefore,
successful ASLR evasions have only been seen occasionally
in real world attack incidents. As for Android, there has not
been a single incident known to the public where its ASLR
was bypassed and a ROP exploit was mounted consequently.
However, we believe that it will not take long before attackers
start exploiting the uniform memory layout among apps for
ASLR evasions as it significantly eases the prerequisites and
difficulties of launching such attacks on Android.

To explain how much easier evasions have become on the
Zygote-forked app processes, we first show the major obstacles
that an attacker has to face in order to bypass ASLR on
other platforms but are weakened on Android by Zygote. We
then systematically discuss the negative impact of Zygote on
ASLR. By demonstrating our attacks on real apps, we present
two general scenarios where the negatively impacted ASLR
can be defeated either remotely or locally, both archiving
ROP capabilities. In the end of the section, we provide a
quantitative analysis to show that the advantage gained by
attackers through exploiting the uniform address space layout
is indeed significant enough to carry out realistic attacks.

A. ASLR Bypasses Made (Relatively) Easy

Attempts to bypass ASLR usually serve as the first step of
a bigger attack plan with the end goal of launching ROP or
other types of control-flow hijacks. This is because exploits
that solely obtain the memory mapping information of a
process do not yield much gain for attackers, unless the
mapping information, such as the load address of a library, can
advance another concurrent exploit within the same process
context, such as a buffer overflow. Together, two or even more
coordinating exploits eventually diverge the original control-
flow of the vulnerable program in a way to carry out malicious
or unexpected activities.

In reality, such attacks involving chained exploits on dif-
ferent types of vulnerabilities are extremely difficult to design
and execute, mostly for two reasons:

• It is quite rare to find an address information leak
vulnerability and a memory corruption vulnerability
within the same program;

• Even if such vulnerabilities do exist, a hard-to-craft
exploit is needed to sequentially trigger the vulnera-
bilities and simultaneously channel the leaked address
information to the second exploitation phase, without
crashing the target process.

These two obstacles have maintained a very high bar
to prevent ASLR bypasses. As a result, the rare events of
successful ASLR bypasses have always drawn the security
community’s attention and have been seriously handled by
software vendors [44].

However, we found that both obstacles on Android are
no longer as difficult to circumvent as they are on other
platforms, due to the system-wide uniform address layout
resulting from the Zygote process creation model. In fact, both
obstacles have been weakened to an extent where bypassing
ASLR through information leakage becomes not only realistic
but also practical. Since the memory addresses of all shared
libraries and code, despite the presence of ASLR, are identical
among all Android app processes running concurrently on the
same device, the memory layout information of one app can be
easily inferred from that of any other app or a different run of
the same app. This cross-app and cross-run sharing of critical
memory layout paves the way to bypass the aforementioned
obstacles and further facilitates the crafting of exploits that
streamline ASLR compromise and control-flow hijacking.

First of all, the search for the required vulnerabilities
no longer need to be confined within a single app. The
relaxed search criteria dramatically increases the chance of
satisfying the exploit prerequisites, to the level of finding
apps that contain either address information leaks or control-
flow hijack vulnerabilities—both types are retrievable from
vulnerability disclosure lists. Furthermore, an attacker who
already managed to gain a footprint on the victim’s device
(e.g., installed a trojan or controlled an app) can launch a
control-flow hijacking attack at any vulnerable app without
having to find any address information leakage. Second, the
exploitation process can now span several temporally separated
stages, which obviate the need to craft a single master exploit
that has to drive the entire attack continuously. Therefore,
rather than taking the complicated path that involves chaining
two or more individual exploits together and finding an explicit
communication channel within the victim process, attackers
now can proceed progressively by executing disconnected
exploits within different vulnerable apps and coordinating
them off-site. Finally, the uniform memory layout among apps
allows for multiple exploit attempts as well as reuse of the
leaked information. Less stable exploits are given multiple
chances to succeed, even at the cost of crashing the targets.
Moreover, once the address information is obtained, it can be
reused by future exploits (as long as the device does not reboot)
to resume an attack.

We also observed that the side effect of the Zygote process
creation model, in addition to directly undermining ASLR
security, has created a rich source of ROP gadgets in every
app process on Android. Figure 2 shows the size of the .text
section (i.e., executable code) in each shared library loaded by
the Zygote process (tested on Android 4.2 with Galaxy Nexus),
which translates into a total of 27 MB of executable code that
is identically located in all app processes.

B. Attacks on Real Apps

We now propose two attack scenarios where Android’s
negatively impacted ASLR can be exploited to carry out
ROP under separate threat models. For each scenario, we first

0 10 20 30 40 50 60 70

Shared Libraries in Zygote (sorted in a size)

1 KB

128 KB

1 MB

10 MB
E

xe
cu

ta
bl

e
se

ct
io

n
si

ze
libchromium net.so

libdvm.so

libc.so

libssl.so

Fig. 2. The size of each shared library’s executable section in the Zygote
process. The x-axis represents the indices of the shared libraries and the y-axis
represents the .text section size, at logarithmic scale.

discuss its assumptions, setup, and attack workflow. We then
demonstrate a concrete attack against popular apps that are
found to be vulnerable, emphasizing the power of the attack
and the realistic nature of the corresponding scenario.

Remote Coordinated Attacks: In this scenario, attackers do
not have any prior presence on the targeted device, that is, the
entire attack is carried out remotely. Two vulnerabilities are
required: one memory address information leakage and one
control-flow hijack. These can exist in different apps and must
be remotely exploitable. The attacker needs to either actively or
passively provide input, serving as exploits, to the vulnerable
apps.

The general workflow of attacks in this category resembles
that of the existing efforts to bypass ASLR on other platforms,
but is significantly easier to realize for the reasons discussed in
Section III-A. The workflow starts with exploiting an address
information leakage in an app. Once the first exploit succeeds
and the conditions to initiate the second exploit are met, the
attacks can then hijack the control-flow of another app. Unlike
exploiting ASLR on other platforms, this attack lowers the bar
for exploiting the vulnerabilities, lasts through disconnected
stages, and can survive unstable exploits.

To verify the feasibility of this attack scenario, we set
out to design and execute an attack on real world apps.
We used two popular Android apps: Chrome Browser
(com.android.chrome, version 25.0.1364.123)
and VLC media player (com.overoz.vlc, version
0.1.0), which contain the vulnerabilities that satisfy the
requirements of our attack: an information leak on the Chrome
Browser and a control-flow hijack on VLC. In particular, we
found a known vulnerability in Chrome Browser (CVE-2013-
0912 [4]) and built an exploit to retrieve part of the memory
layout of the browser process. Our exploit triggers a type
confusion error inside Chrome’s SVG parser, leading to an
out-of-bound memory read that leaks the memory addresses
of the loaded libraries. This exploit is embedded inside a
piece of JavaScript code that is served to vulnerable browsers
when they connect to a web server under our control, which
follows a typical and effective setup of remote exploits. The
second vulnerability was found in the H.263 decoder in
VLC Media Player [16], through which our exploit triggers a
buffer overflow with a malformed .swf file and hijacks the
control-flow of the media player in a ROP fashion thereafter.

①

②

③

④
Attacker’s

web server

Victim’s Android

VLC player

Chrome

Fig. 3. A remote coordinated attack for the Chrome browser and VLC
Media Player on Android. Each numbered step represents: 1) a malformed
html file exploiting the information leak vulnerability, 2) leaked memory
layout information, 3) URI intent, and 4) a malformed video file exploiting
the control-flow hijack vulnerability which bypasses ASLR.

Figure 3 illustrates the detailed workflow of our attack,
which is similar to that of drive-by download attacks on desk-
tops. When a vulnerable Chrome Browser requests a webpage
from a compromised server, the attacker pushes the JavaScript
exploit to the browser as part of the requested HTML page (À).
The exploit coerces the browser’s SVG parser to mistakenly
convert the type of an attacker-supplied data object into one
with a larger size than the original type. As a result, the
effective scope of the newly converted object expands into
the subsequent memory region, which contains a pointer to a
core system library that is preloaded by the Zygote process and
shared by all app processes (libchromium_net.so). The
exploit then simply reads the raw address in its new type object
and sends the leaked address information back to the remote
server (Á). Next, a second exploit is dynamically generated at
the server-side with the address information as an input. It can
carry out an ROP attack using the VLC Media Player using
the gadgets constructed from libchromium_net.so. The
JavaScript exploit running inside the browser now initiates the
second stage of the attack by issuing a request for opening
the remote .swf file, which is dispatched to the VLC Media
Player by the OS through an Intent (Â). In this step, the
VLC Media Player will be automatically launched by the
Intent even if it was not running on the device. Finally,
the media player downloads and starts rendering the exploit-
loaded media file (Ã), during which the call stack is smashed
with return addresses to ROP gadgets and the program counter
is then hijacked.

Since designing sophisticated ROP attacks is out of
the scope of this work, our proof-of-concept attack stops
when the call stack is compromised and control-flow is hi-
jacked, which represents an ideal starting point for launching
meaningful ROP attacks. Given a huge .text section in
libchromium_net.so (1.57 MB of executable code), we
estimate the task of searching for ROP gadgets to be fairly
easy, even if a large variety and amount of gadgets are desired.

As shown in the above proof-of-concept, remote coordi-
nated attacks do not involve any user interaction except for the
initial contact and can stay stealthy during the entire lifecycle,

a process similar to drive-by download attacks. Leveraging the
significantly reduced difficulty of bypassing ASLR, our attacks
demonstrate that launching purely remote attacks on Android
platforms are not as hard as assumed by previously proposed
attacks on mobile devices, most of which require a locally
installed app to begin with. Our extended search for other
suitable target apps for this attack suggests that the vulnerable
apps are not uncommon on users’ devices. A large number of
apps either use old legacy code that have known vulnerabilities
or implement error-prone features (e.g., media decoders and
input parsers) using native code.

Note that Android’s permission model may limit the ca-
pability of this ASLR bypass attack. If the permissions are
enforced appropriately for an app, no meaningful malicious
activities can be done given the limited permissions of the
app. In practice, however, it is known that the least privi-
lege principle is difficult to enforce as we have seen from
over-privileged apps in Android [20]. Furthermore, low-level
code executions in control-flow hijacking attacks could allow
attackers to bypass permission checks by exploiting kernel
vulnerabilities.

Local Trojan Attacks: Unlike the first scenario, local trojan
attacks bypass ASLR by obtaining the memory address infor-
mation via an unprivileged trojan app, rather than exploiting
an information leakage remotely. The trojan app needs to
be installed on the victim’s device beforehand, most likely
through social engineering means. To be appealing to the
targeted user or to infect a large number of users, the trojan
app may provide bogus features and does not ask for any
permissions. In this case, the goal of the attackers is to
bypass ASLR and hijack the control of another app, eventually
escalating its privilege (e.g., the target app is privileged) or
stealing protected data (e.g., the target app manages private or
confidential data).

The workflow of this type of an attack is fairly straightfor-
ward. The local trojan app reads the address layout information
using a simple native function. It can then attack any neighbor
apps through locally exploitable control-flow hijacking vulner-
abilities. In principle, the attack surface in this case is much
larger than that of the previous attack scenario, due to the fact
that not only network sockets but also all means of performing
IPC on Android can be used for delivering exploits. Finally, the
exploit uses a memory corruption error as a window through
which the attack-supplied logic can be executed using ROP
under the identity of the target app.

We built a simple trojan app for demonstration. It first
finds out the base address of libc.so in its own process
through a JNI call that returns a function pointer value. It then
exploits the aforementioned vulnerability in the VLC Media
Player through two separate attack vectors—an Intent and
a Binder message, both requesting VLC to render a crafted
media file. Once the ROP code starts executing in the process
context of VLC, it effectively gives the trojan app (and the
attacker) access to not only all granted permissions of the
player, but also the victim app’s private data in the file system,
database, and even memory (where sensitive data exists in
decrypted form).

In general, because of the uniform memory layout across
all apps, local trojan attacks on Android can easily bypass

ASLR to perform malicious activities, e.g., stealing permis-
sions, peeking into another app’s data, and even exploiting the
system apps or the OS.

C. Quantitative Analysis of Attackers’ Advantage

Without using our attack, bypassing fully effective ASLR
requires two independent vulnerabilities, namely, a control-
flow hijacking and an address information leak, in the same
app. Therefore, the difficulty of exploiting ASLR via an app
x can be represented by the probability of finding these two
vulnerabilities simultaneously inside x:

Prexploit(x) = Prα(x) ∗ Prβ(x),

where Prα(x) is the probability of finding a control-flow hijack
vulnerability in x, and Prβ(x) is the probability of finding an
address information leak vulnerability in x.

Next, we derive the difficulty of bypassing ASLR for both
of the attack scenarios we discussed earlier, in terms of the
probability of finding for the exploitable vulnerabilities.

Remote Coordinated Attack Analysis: Since the two inde-
pendent vulnerabilities can now exist in separated apps, the
difficulty of exploiting the app x becomes:

Prcoordinated
exploit (x) = Prα(x) ∗

∑
y∈S

Prβ(y),

where S is the set of apps running on the same device as
x. Note that apps in S must have the proper permissions
to interact with the app x so that the information leak and
control-flow hijacking attacks can be chained together (i.e.,
using Intent in our shown attack).

Thus, the advantage of the adversary A who chooses re-
mote coordinated attacks over the conventional ASLR exploits
can be defined as the difference between the difficulty of each
exploitation:

Advcoordinated(A) = Prcoordinated
exploit (x)− Prexploit(x)

= Prα(x) ∗

∑
y∈S

Prβ(y)− Prβ(x)

 .

Obviously, x ∈ S, thus Advcoordinated(A) ≥ 0, showing
that remote coordinated attacks always have a non-negative
advantage.

∑
y∈S Prβ(y) captures the fact that any app in S

can be used as address information leak vector, and it grows
as more apps are included in S. The advantage can be quite
large on a user device where many popular and complex apps
are installed, due to the fact that such apps often contain
vulnerability-prone code and allow interactions with other apps
for better usabilities.

Local Trojan Attack Analysis: Having a local trojan app
installed on the victim’s devices obviates the need for finding
and exploiting an address information leakage vulnerability.
Therefore, the difficulty of launching a local trojan attack can
be represented by:

Prtrojan
exploit(x) = Prα(x) ∗ Prγ(y),

where Prγ(y) is the probability of a user voluntarily installing
the trojan app y.

Accordingly, the advantage of the adversary B who chooses
local trojan attacks over the conventional ASLR exploits is:

Advtrojan(B) = Prtrojan
exploit(x)− Prexploit(x)

= Prα(x) ∗ {Prγ(y)− Prβ(x)} .

The attacker’s odds in this case are determined by the
differences between Prγ(y) and Prβ(x), and we argue that
Prγ(y) would be bigger than Prβ(x), given that human users
are often considered as the weakest link in security and can be
easily fooled by skilled attackers—in this case, well-disguised
and attractive-looking trojan apps. Taking the well-known
DroidDream trojan for an example, 250,000 Android users
downloaded the app within three months [36].

IV. MORULA: EFFECTIVE AND PRACTICAL MITIGATION

Motivated by our identification and analysis of the weak-
ened ASLR on Android, we propose Morula, a security-
enhanced process creation model with simple design and opti-
mized performance. Morula mitigates the negative side effects
on ASLR by the current Zygote model that (accidentally)
uniforms the layout of critical memory regions across all
running apps. We now discuss the design of Morula, starting
with an intuitive yet impractical idea, and then an effective and
performant solution to reinforce Android ASLR.

A. An Intuitive Idea and Limitations

The simplest approach to removing the uniform memory
layout from Android processes is to create each app process
independently from scratch without using the Zygote as a
template. This approach essentially reverts the process creation
model back to that of Linux and abandons the efficient design
choice made in the early days of Android that employs a
pre-built and pre-initialized template process to speed up the
launching for every app. We implemented and evaluated this
intuitive approach in order to examine its feasibility, and
indirectly, the design rationales of the Zygote process creation
model on today’s much improved mobile hardware.

We found an OS debugging feature in Android, namely
process_wrap, that allows us to carry out this intuitive
idea easily. process_wrap provides a hook into the Zygote
process creation model, which is invoked immediately after
each process is forked from Zygote and before an app image
and any app-specific data are loaded into the forked process.
Using this hook, we implemented a so-called Wrap process
creation model, which forces every process forked from Zygote
to regenerate their memory layouts through a call to exec()
placed by the hook. Since exec() reloads the process image
and the shared libraries, ASLR is now able to arrange the
memory layout individually for each process as part of the
exec() invocation. Figure 4 illustrates the workflow of this
new model. At first, Activity Manager sends an app creation
request to the Zygote process (À). Next, Zygote forks a
new process, which then invokes exec() to load the master
app process image (/system/bin/app_process), as a
result of our process_wrap hook (Á). A cold process
initialization follows (Á), which is not needed in the Zygote

Init (pid=1)

Zygote

AM

Browser

① request
 new app

② fork()
 & exec() …

Shared libraries
③ cold-init
④ specialize

Fig. 4. The Wrap process management model when launching a browser app.
Since a new process is invoked on every request of launching new applications
in the Wrap scheme, all running processes locate shared libraries differently
in ASLR-enabled Android.

model (see Figure 1). Finally, the new process goes through
the specialization step, where the process attributes are set
and the control flow jumps to the target application’s entry
point (Ã). Now that Android follows the typical fork-then-
exec process creation model, each process has a uniquely
randomized memory layout, where shared libraries are no
longer identically located in memory, as shown in the shaded
area in Figure 4.

As expected, our experiment shows that, even on devices
with the recent generation of hardware, replacing the Zygote
process creation model with the Wrap model causes slowdown
in app launches. Since the Wrap model goes through a full
cycle of DVM creation and initialization, which is avoided in
the Zygote model, it results in an average app launch time of
4.34 seconds, adding a 3.52-second wait to the current app-
launching user experience, which we deem as unacceptable.
In addition, the device boot-time suffers a 190% increase and
amounts to 37.80 seconds.

Due to the prohibitive performance overhead, this intuitive
approach is of little potential to be used as a practical solution.
However, we gained useful insights into the OS while imple-
menting this approach. The insights, especially those into the
process_wrap hooks and app process creation, contributed
to an efficient and easy-to-adopt design of Morula. More
importantly, exploring this approach helped us understand that,
despite its side effect in weakening ASLR, the Zygote process
creation model is a performance-critical design in Android
that cannot be simply removed. Security solutions that aim
to eliminate its negative side effects should be able to largely
conserve its performance benefits.

B. Performant Process Creation without Damaging ASLR

The goal of Morula is to enable app processes to have
individually randomized memory layouts, as what the Wrap
process creation model produced, while maintaining the app
launch time at a similar level as that of the Zygote model. We
observed that the optimal app launch time of the Zygote model
is achieved by having the template process performing the
common and time-consuming initialization tasks beforehand.
We designed Morula to perform a similar task—speeding up
app launches by keeping the time-consuming task out of the
critical path—but in a different approach that does not reduce
the effectiveness of ASLR or other security mechanisms.

Specifically, our Morula process creation model revamps
the Zygote model by upshifting the role of the Zygote process
into an abstract process template, which no longer directly

Init (pid=1)

Zygote

AM

Morula

…

Shared libraries③ cold-init

② fork()
 & exec()

Morula

Pool of Morula
instances

① request
 prepare
 when idle

(a) A preparation phase

Init (pid=1)

Zygote

AM

Browser

…

Shared libraries

Morula

② send
app info

③specialize

① request
 new app

(b) A transition phase

Fig. 5. The Morula process creation model when launching a browser app.
Morula, surrounded above by a dashed line, represents a template for any
Android app. It is created when the device is in idle states (a), and then
transformed into the browser (b). Since Morula prepares a pool of template
instances having random memory layouts ahead of time, application launch
on request is not only fast but also takes full advantage of ASLR.

spawns app processes but forks intermediate process tem-
plates, called Morula processes. Created ahead of time, Morula
processes serve as initialized app execution hosts, which are
allocated to start and host individual apps. Upon receiving an
app launch request, a Morula process instantly loads the app
and starts it without repeating the time-consuming initialization
tasks. Therefore, the app launch time remains optimized.
Moreover, each Morula process has to reload an independent
memory image during the ahead-of-time initialization phase,
which guarantees that no memory layout is shared among
different app processes.

Figure 5 demonstrates the two phases where a Morula
process is first prepared in advance and later used to start an
app process, a browser in this case. The preparation phase,
shown in Figure 5-(a), is initiated by the Activity Manager via
a preparation request to the Zygote process, when the system is
idle or lightly occupied (¬). In turn, the Zygote process forks a
child, which immediately makes a call to exec() to establish
a new memory image with a freshly randomized layout ().
At the cold-init step (®), the new process constructs a DVM
instance and loads all shared libraries and common Android
classes, which would tremendously prolong the app launch
time if not done in advance, as indicated by the significant
slowdown caused by the Wrap model. At the end of this step,
a Morula process is fully created, waiting for the request to
start an app. Note that multiple Morula processes may be
created when conditions permit, in order to accommodate an
uncommon demand for starting several apps in relatively short
time intervals. As shown in Figure 5-(a), each Morula process
has a distinct memory layout, unlike the processes created
under the Zygote model. Since Morula processes are created
asynchronously to upcoming app launch events, they will enter
sleep mode if not instantly needed and then move to the next

phase when wakened.

A Morula process enters the transition phase, as depicted
in Figure 5-(b), only when requested by the Activity Manager
to start a new app (¬). The request is routed to the Zygote
process first, where a decision is made regarding if the app
should be started in a Morula process or in a fork of the Zygote
process. Having this option allows the Morula model to be
backward compatible with the Zygote model, in order to carry
out an optimization strategy called “selective randomization”
(explained shortly). When a Morula process is chosen, the
Zygote process forwards the app launch request through a
pipe (). With the concrete app information, the Morula
process then starts specializing itself, loading the app package
and setting the appropriate UID, GID, debugging flags, thread
capabilities, etc. Finally, the Morula process hands over the
control-flow to the app and transitions into a browser process
(®). Unlike the preparation phase, the transition phase stands
on the critical path of app launches, whose delay, if noticeable,
can hurt the responsiveness of the apps and the launch-time
performance in general. Thanks to the minimized workload
that has to be executed in the transition phase, which is almost
the same as what is required under the Zygote model when
launching apps, the Morula model does not incur additional
noticeable launch-time delays in most cases when compared
to the Zygote model, as shown in Section V.

Morula’s design can be viewed as a hybrid that combines
the Zygote model and the Wrap model: similar to the Zygote
model, it carries out in advance the time-consuming and
commonly required tasks involved in creating app processes;
learning from the Wrap model, it enforces a memory layout
refresh when pre-creating the template processes. As a result,
the Morula model achieves its goal of bringing individually
randomized memory layout to Android apps while maintaining
an optimal app launch time. However, if the design stays at
this stage, our Morula model would have to pay non-negligible
penalties on device boot time and memory usage efficiency.

We found that the only time when app launch requests
can briefly outnumber the prepared Morula processes is during
device boot-time. This is because multiple apps may be started
simultaneously at boot-time, whereas a booted mobile device
does not experience such dense requests for launching apps.
This bottleneck results in a half-minute boot time, which
can be unsatisfactory to some users. Additionally, with each
process explicitly reloading the shared libraries and creating
a private instance of the DVM, global sharing of common
memory pages is not possible and therefore physical memory
usage efficiency is reduced. However, thanks to copy-on-
write memory pages enabled by the Linux kernel, the shared
libraries, though loaded individually by each process, only
have a single copy in physical memory, which does not
cause additional space overhead. In fact, Morula only poses
a moderate 13 MB overhead to the physical memory for each
running application, which we believe can be digested by many
modern mobile devices.

Nevertheless, we retrofitted our basic design of Morula
with two optimization strategies, which brings the boot time
and memory usages on par with the Zygote model. We now
explain both strategies.

1 10 100 1000

Preloading time (miliseconds)

101

102

103

104

105

106

A
llo

ca
tio

n
si

ze
(b

yt
es

)

android.webkit.WebView

android.media.CameraProfile

libcore.icu.TimeZones

used
not used

Fig. 6. An example of preloaded Dalvik classes and their run-time usages in
Android Browser. The blue circles (204 in total) represent the Dalvik classes
in-use while the red crosses (2,337 in total) represent the unused ones. The
x-axis (class loading time) and the y-axis (memory image size) are both on a
logarithmic scale.

C. Further Optimizations Exploiting System Characteristics

While Morula provides fast app launching time to the user,
the performance of Morula can be further optimized using two
optimization techniques: on-demand preloading and selective
randomization.

On-demand Loading: This optimization strategy was inspired
by our observation on the use-load ratio of Dalvik classes,
which we acquired during our study of the time-consuming
initialization tasks carried out when an app process is being
created. We found that the construction and initialization of
the DVM represent the single most resource-consuming task
involved in app process creation. This task requires, among
other things, preloading a list of 2,541 Dalvik classes, which
are deemed to be commonly used by regular Android apps
and thus worth preloading into all app processes. However, our
analysis of a set of 110,014 free apps from the Google Play
Market suggests otherwise: on average, each app only makes
use of a small fraction, around 5%, of the preloaded Dalvik
classes (i.e., 122 out of 2,541). Taking the Android Browser
app as an example (com.android.browser), despite its
heavy dependence on a broad range of classes, it only requires
204 out of the 2,541 preloaded classes, as shown in Figure 6,
resulting in a waste of load time and memory space.

This extremely low use-load ratio of the preloaded classes
introduces a large amount of unnecessary delay to the prepara-
tion phase in our Morula model, which happens at the creation
of each Morula process. This adverse effect on performance is
amplified when a rare shortage of prepared Morula processes
is encountered (due to the boot-time burst of app launch
requests), contributing to the previous discussed issue of the
prolonged boot time under the Morula model. It is worth
noting that under the Zygote model, boot-time is not affected
as much because the preloading of classes and the entire DVM
initialization only happens once per device boot.

Given that the overly broad class preloading is not suit-
able to Morula, our optimization strategy, on-demand loading,
simply removes the workload of loading the 2,541 classes
from the preparation phase, and instead relies on the DVM’s
dynamic class loading feature that dynamically loads a class
when needed. As a result, on-demand loading addresses a per-
formance bottleneck of the preparation phase, which enables a

much higher throughput of Morula processes and significantly
reduces the likelihood of having Morula process shortages even
during device boot. As shown in Section V, the boot time
is eventually improved by 51% on average. Additionally, the
memory usage efficiency of apps is also improved due to the
exclusion of unnecessary classes.

On the other hand, this optimization strategy may incur
slight launch-time or runtime delays when on-demand dynamic
loading is triggered for those classes that would have been
preloaded otherwise. In average cases, based on our afore-
mentioned statistics, disabling the preloading only leaves 122
classes to be loaded dynamically by a regular app, whose
negative impact on performance is too small to measure.
However, we have seen some real apps that have a large
dependency on the preloaded classes, and they tend to be
delayed by less than 0.5 seconds when launched (because these
classes now need to be loaded dynamically).

Recognizing its strength and the potential drawback, we
designed and implemented this optimization to be dynamically
controllable through a new Android kernel property. We rec-
ommend enabling this optimization by default because it sig-
nificantly shortens device boot time and reduces app memory
footprints. However, it can be disabled when preparing Morula
processes for launching and hosting potential apps that require
a large portion of the preloaded classes.

Selective Randomization. The key security benefit of Morula
that fortifies the weakened ASLR on Android—allowing indi-
vidually randomized memory layout for each process—is also
the main reason why Morula causes additional time and space
overhead compared to the Zygote model. This optimization
strategy, namely selective randomization, aims to strike a bal-
ance between security gain and performance penalty, especially
for low-end devices with restricted computing resources. For
instance, suppose the device can only support a limited number
of apps under the Morula model due to the performance
overheads. In this case, it would be better to run the apps
that are more likely to be vulnerable to ASLR exploits under
the Morula model, and run the rest under the Zygote model.

A simple and efficient approach to classify apps into one of
the two groups described above can be done based on whether
an app is distributed with a native code component (i.e., built
with Android NDK). In fact, Android apps without the native
code component are less likely to be exploited to leak memory
layout information compared to the apps with the native code
component, because the native code distributed with each app
can be an easy target for attackers. Apps without the native
code components only run the default libraries in Android, and
these libraries are well-maintained by either device vendors or
Google, as they are widely used. However, apps with native
code components may load uncommon third-party native code,
and many of them are not well-maintained and out dated. Note
that this approach sacrifices security for performance benefits,
and thus it should be applied with the proper understanding of
its limitations (Section VI).

Our selective randomization strategy simply reroutes app
launch requests for a non-NDK app to the old Zygote process
creation model, saving the prepared Morula processes for those
apps that may be a concern for leaking address layout or
evading ASLR. In general, checking if an app contains or

uses native code can be easily achieved by searching for binary
executables in the package or JNI declarations in the bytecode.
However, we are aware of techniques, such as binary file
obfuscations, remote bytecode, Java reflections, etc., that can
be used to hide the use of native code, and in turn, abuse
this optimization to bypass Morula. A simple solution is to
instrument the JNI binding component inside the DVM and
reject stealthy 3rd party native code. We leave this as future
work.

D. System Implementation

We used Android 4.2 (Jelly Bean) as the reference plat-
form to prototype Morula. The implementation is generic to
all Android versions, including the latest 4.42, and can be
ported to them without changes. To minimize the changes
introduced to the OS and maintain backward compatibility, we
implemented Morula on top of the current Android process
manager and confined Morula’s code within two existing
modules: the Activity Manager and the Zygote daemon. The
Activity Manager is extended to dynamically maintain a pool
of Morula processes and fulfill app launch requests using
either a prepared Morula process or a forked Zygote process,
depending on the selective randomization strategy. The code
added to the Zygote daemon handles Morula preparation
requests and creates Morula processes accordingly. The new
daemon also checks the system property that indicates whether
on-demand loading is enabled. When possible, our code reuses
the existing initialization and specialization routines in Zygote,
which have been peer-reviewed and deployed in the real world
for years. All inter-module requests are sent and received
through pipes or sockets. The sender’s UID is always
checked to make sure that only system modules can interact
with Morula, avoiding abuses or attacks from malicious apps.

Morula only adds 548 lines of Java code and 197 lines of
C code to the Android OS, which we hope can be promptly
reviewed by the security community and soon merged into
the Android Open Source Project. We believe this simple and
effective countermeasure can be easily adopted by vendors
without any technical hurdles. The implementation is generic
to all versions of Android and free of compatibility issues with
vendor-specific OS customizations, which are implemented at
a much higher level than Morula.

V. EVALUATION

In this section we report of our evaluation of Morula and its
comparison with the original Android system. First, we evalu-
ated the effectiveness of ASLR by determining whether Morula
can provide different memory layout among Android processes
and prevent our proposed attacks. Second, we measured end-
to-end device boot performance to see whether Morula can be
used by real-world users without noticeable overheads. Lastly,
we conducted Android compatibility tests to check whether
Morula causes compatibility issues with either Android apps
or the OS. All experiments were conducted on the Galaxy
Nexus, which has a dual-core 1200 MHz CPU (ARM Cortex-
A9), 1 GB RAM, and 32 GB built-in storage.

2 Android 4.4 (KitKat) introduced an experimental feature, ART, which
pre-compiles an app’s bytecode into native code at installation-time [6]. This
feature changes various aspects of the Android OS and DVM, but ART is also
relying on the Zygote process creation model to speed up the app launches.

A. ASLR Effectiveness

The goal of Morula is to make ASLR effective without
degrading performance so that a commodity Android system
can prevent the attacks described in Section III. We measured
the effectiveness of ASLR in two ways: examining randomness
of the memory layout of the entire Android system, and
estimating how much effort is required to bypass ASLR by
an attacker.

System-wide Randomness. Based on our experience of break-
ing the ASLR scheme, we define a measure of a memory
layout’s randomness and use this measure to check whether
the address space layout in the entire Android system is
sufficiently random. If it is, no attacker can guess exploitable
target addresses in other applications from leaked memory
addresses.

First, we measure the address space layout randomness of
each shared library using the notion of entropy [10]. Since
entropy captures the uncertainty of a given random variable, we
can apply this to measure the address space layout randomness
by treating the possible addresses as a random variable.

To be specific, let Xm be a discrete random variable with
base addresses {x1, x2, ..., xn} for a shared library m, and
p(xi) is a probability mass function (pmf). Then H(Xm), the
normalized address space layout entropy of the shared library
m, is defined as

H(Xm) = −
n∑
i=1

p(xi)
ln p(xi)

lnn
,

and 0 ≤ H(Xm) ≤ 1 due to the normalization factor lnn.
H(Xm) becomes zero when the shared library m is mapped
to the same address for all different apps, and becomes one
when it is mapped to all different and unique addresses.

For example, suppose libc.so is loaded by four Android
apps at the same address, 0x1000. Then the output of pmf
will be p(0x1000) = 1, and the address space layout entropy of
libc.so is computed as H(Xlibc.so) = 0. However, suppose
libssl.so is loaded by four Android apps at four different
addresses {0x1000, 0x2000, 0x3000, 0x4000}. In this case,
the outputs of pmf will be always 0.25 because each address
is uniformly distributed, and H(Xlibssl.so) = 1.

Based on the randomness on each shared library above, the
address space layout randomness of an entire Android system
in the device D is defined as

R(D) =

∑
m∈M

H(Xm)

|M |
,

where M is a set of shared libraries running on the device D
and |M | is a size of M . Thus, R(D) shows the averaged ad-
dress space layout randomness for all shared libraries running
in the device D.

We measured R(D) on our Android device after booting is
finished, and different process creation models were applied for
the boot procedure. As shown in Figure 7, the current Android
(labeled as Zygote) has 0.127 entropy, which means the current
shared libraries among Android applications mostly share their
address space layouts. Therefore, it is possible for attackers to
exploit vulnerable applications by guessing target addresses

Mode R(D) T (D)

Zygote 0.127 1
Wrap 0.993 19,373
Morula 0.992 18,360

Fig. 7. ASLR effectiveness; R(D) denotes the averaged address space layout
randomness and T(D) denotes the averaged number of trials for successful
ASLR bypassing.

based on leaked addresses. Note that entropy for Zygote is not
zero because a few shared libraries are independently loaded
by apps, which results in different base addresses for such
libraries. Morula along with Wrap, however, has more than
0.990 entropy. This suggests that an Android system with
Morula deployed has heterogeneously different address space
layouts for apps, and thus it is difficult for attackers to correctly
guess the address space layouts.

Number of Trials to Bypass ASLR. To see how Morula helps
an Android system prevent remote coordinated or local trojan
attacks, we first design a cross-ASLR attack model and use
this model to measure the attacker’s required efforts to bypass
ASLR. In this model, it is assumed that the attacker already
leaked a single piece of address information: the address x for
a certain application ai. Based on such leaked information,
the attacker tries to further infer a semantically equivalent
addresses in other applications. The semantically equivalent
address here refers to the address with the identical memory
values or footprints in other applications. For example, two
addresses in separate apps are semantically equivalent address
if those two point to the same library with the same offset.
It is also assumed that the attacker has prior knowledge of
the memory layout in that semantically equivalent addresses
are in similar locations for two apps3, and the attacker has
access to a decision oracle to test whether the given address is
semantically equivalent in the other application. An example
of how to query an oracle, in practice, is exploiting the
target application with the guessed address and then making
a decision based on the result: accept if the exploitation
was successful, and reject if the exploitation failed (e.g., an
application crashed).

Based on the assumptions described above, a cross-ASLR
attack is described in Algorithm 1. Given the leaked address x,
the attacker tries to find a semantically equivalent address for
the other target application. The attacker queries the decision
oracle repeatedly, starting from the leaked address x and
stepping up/down by adding/subtracting the current address
with a page offset. This is because the base addresses in the
library are aligned at page boundaries and the semantically
equivalent addresses are located in similar areas, as per the
attacker’s prior knowledge.

3 This prior knowledge is based on widely used techniques to break
ASLR deployed systems. For example, to bypass stack address randomization,
attackers usually get the rough stack base addresses from other systems
running similar execution environments (i.e., an operating system with same
distribution and version) [42]. The other reasoning behind this is that the
base address for each library is in the order of its loading due to the
functions of mmap() system call implementations and such a loading order is
deterministic [21].

0

20

40

60

80

B
oo

tt
im

e
(s

ec
on

ds
)

Zygote
Wrap
Morula (no opt)
Morula (on-demand load)
Morula (selective rand.)
Morula (both opt)

(a) Booting time

0

200

400

600

800

A
si

ze
of

to
ta

lm
em

or
y

us
e

(M
B

)

Zygote
Wrap
Morula (no opt)
Morula (on-demand load)
Morula (selective rand.)
Morula (both opt)

(b) Memory usage

Fig. 8. End-to-end boot-time performance overheads of Morula compared to
the default Zygote process creation model. Morula increased boot time 230%
and memory usage 269%. After applying both optimizations, however, Morula
decreased boot time 3% and increased memory usage 34%.. We measured boot
time and total memory usage immediately after Android becomes ready to use.
Performance benefits from selective randomization need careful interpretations
(Section VI).

Algorithm 1 Cross-ASLR Attack
// In : an address ptr leaked by an attacker
// Out: a semantically equivalent address in
// the other target application

// walk away from ptr, by PAGE_SIZE step
for (offset = 0;; offset += PAGE_SIZE) {
for (target in {ptr-offset, ptr+offset}) {
// found semantically equivalent address
if (ORACLE(target) == ACCEPT)

return target;
}

}

Thus, since each oracle access involves additional costs
(e.g., observing crashes), the attacker’s required efforts to
bypass ASLR is directly related to the number of oracle
accesses. We call this number of oracle accesses the number of
trials, and count the number of trials using the address space
layout immediately following device boot. This is shown as
T (D) in Figure 7. The count under the Zygote model is one,
which indicates that the attacker would be successful on the
first try. However, under the Morula model, the attacker would
face immense challenges in that they need to try more than
18,000 times. This suggests that the attacker needs to search
more than 18,000 memory pages or crash the app more than
18,000 times to correctly guess the address. We believe that
this huge number of trials makes the attack meaningless and
shows that Morula significantly raises the bar for attackers to
bypass ASLR.

B. Performance Overheads

End-to-end Boot-time Performance Overheads. To compare
the performance overhead, we evaluated each process creation
model independently. For each model, once the booting pro-
cess has finished, we measured the elapsed time for booting
and the size of used memory. The elapsed time for booting is
measured by capturing the timestamps of logs that signal the
completion of device boot. The size of used memory spaces
is measured by parsing /proc/meminfo, which shows the
system memory information maintained by the Linux kernel.

This process repeats five times before the average and the
standard deviation are computed.

These measurements are illustrated in Figure 8 with error
bars representing the standard deviation. We can see that
Morula has a larger overhead than Zygote before the opti-
mization techniques. This is expected because many default
system apps are launched at once during the booting pro-
cess to support the basic features of Android. For example,
com.android.phone is executed to support phone calling
features and com.android.nfc is launched to enable NFC
features. On our evaluation environment (Android 4.2), 19 apps
are started during the booting process.

The device booting time under Morula is 230% (29 sec-
onds) slower than that under Zygote (Figure 8-(a)). This is
because Morula needs more time to execute each app for DVM
initializations and address relocations, which are not required
in the Zygote model. While Morula can take advantage of the
device’s idle states to prepare Morula processes with initialized
DVM instances, this is not possible when the device is fully
occupied to process many workloads during the booting time.
Moreover, without optimization, Morula is even slower than
the Wrap model because it needs to prepare extra Morula
processes and manage communications through pipes.

For memory usage overhead (Figure 8-(b)), Morula used
269% (297 MB) more memory to boot the device than the
Zygote model. This is because Morula does not allow sharing
of resources such as relocated sections or heaps allocated by
DVM. Compared to the Wrap model, Morula shows slightly
more memory usage due to the extra Morula process.

However, once we have applied the optimization strategies,
Morula’s performance improved significantly. For boot time,
on-demand loading and selective randomization reduce the
additional delay down to 9 seconds and 6 seconds, respectively,
compared with the boot time under the Zygote model. This
implies that each optimization technique is effective at im-
proving the boot time of a device using Morula. Especially for
selective randomization, a total of 19 default system apps are
executed at boot-time but only two require Morula processes
for individually randomized memory layouts. When both opti-
mization techniques are applied simultaneously, a device boot
under Morula outpaces a boot under Zygote by 0.4 seconds.
Though this improvement would be negligible in practice, it
shows Morula with full optimizations imposes no additional
overhead compared to Zygote. In regards to memory use, on-
demand loading and selective randomization curtail the boot-
time memory space overhead to 186 MB (168%) and 46 MB
(41%) overheads, respectively, compared to the Zygote model,
and are lower than the overhead from native Morula. When we
apply both optimizations together, Morula used 37 MB (33%)
more memory space than the Zygote model.

App Execution Performance Overheads. To see performance
impacts on executing each app on Android, we first selected
five popular apps from Google Play. Figure 9 shows a list
of apps that we selected, including apps for social networks,
messaging, and web browsing. Each app is executed as follows.
First, an Android device is booted up with the Zygote process
creation model. Next, a system property is set to specify which
process creation model (Zygote/Wrap/Morula) will be used for
executing the app. Then, the app is automatically executed by

Package name Ver. Size (MB)
.apk/.dex

Twitter com.twitter.android 4.1.2 6.1/2.3
Skype com.skype.android.access 1.3.0.2 4.4/0.8
Pandora com.pandora.android 4.4 5.8/3.7
Instagram com.instagram.android 4.0.2 15.7/4.1
Android browser com.android.browser 4.2 2.4/0.8

Fig. 9. A list of apps to evaluate app execution performance overheads

sending an Intent to the main activity class via adb terminal
interfaces, which has the same effect as a user clicking an app
icon to launch the app. Note that each process creation model is
specified after booting up the device to avoid any system-wide
effects during the booting processes and fairly compare the
app execution performance overhead across different process
creation models.

We measured two primary performance overheads in exe-
cuting apps: 1) launch time and 2) memory use. Launch time is
defined as an elapsed time between the time when the activity
manager receives the app creation request and the time when
the target app is displayed on the screen. These two timing
events were measured using log messages captured via adb
terminal interfaces.

Morula aims to provide a similar quality of launch time
as the Zygote model, and Figure 10-(a) shows that Morula
successfully met this goal. For all five apps we evaluated,
Morula and Zygote show a similar launch time. Interestingly,
Morula was slightly faster than Zygote (2%), which was a neg-
ligible trade off between the extra pipeline communication time
(in Morula) and invoking fork() system call (in Zygote).
This also implies that Morula successfully precomputed the
resource initializations and address relocations ahead of time,
and these computations were not included in launch time. This
suggests that a mobile user under Morula can enjoy equivalent
launch times compared to Zygote while additionally having
randomized memory layouts. When on-demand loading is
applied on Morula, the launch time is increased 37% compared
to Zygote. This slowdown compared to Morula without the on-
demand optimization stems from the fact that Dalvik classes
need to be loaded during launch time. Launch time under the
Wrap model increases 3.52 seconds (427%) on average. This
increase was deemed unacceptable for users.

To see how much memory space is required to execute
an app, we measured private dirty for the app, which
shows the amount of RAM space that is not shared with any
other app. This private dirty would show actual memory
space solely responsible for executing an app. This information
was collected by aggregating private dirty sizes located
in /proc/pid/smaps. We captured this information after
executing each app, which is shown in Figure 10-(b). On
average, Morula uses 13.7 MB more memory compared to the
Zygote model. These memory costs were mostly due to: 1)
address relocations and 2) DVM’s private heap. Since Morula
randomizes address layouts, all relative-addressing pointers
should be relocated. Thus, memory pages with such pointers
cannot be shared with other apps, and these will be counted as
private dirty pages. In addition, Morula always creates
a new DVM instance for executing an app, and this new DVM
instance requires allocating its own private heap to maintain

Twitter Skype Pandora Instagram Android browser0

1

2

3

4

5

6

7

8
La

un
ch

tim
e

(s
ec

on
ds

)

Zygote
Wrap
Morula (no opt)
Morula (on-demand load)

(a) A launch time

Twitter Skype Pandora Instagram Android browser
0

10

20

30

40

50

60

P
riv

at
e

di
rt

y
si

ze
(M

B
)

Zygote
Wrap
Morula (no opt)
Morula (on-demand load)

(b) Memory uses

Fig. 10. Per application execution performance overhead: (a) A launch time to execute an app using different process creation models. The launch time
shows how long a user needs to wait until the app is displayed on the screen after executing the app. Compared to the Zygote model, on average Morula is 5
milliseconds (0.7%) faster than Zygote while Wrap slows down 3.52 seconds (427%). After applying the on-demand loading optimization, it slows down 0.30
seconds (37%); (b) Memory uses measured with the private dirty size. Morula uses 13.7 MB (85%) more memory spaces compared to Zygote. After on-demand
loading optimization, 10.8 MB (68%) more memory spaces were used.

VM execution contexts and other resources. However, since
the Zygote model simply forks the existing Zygote process to
execute an app, it does not have these memory costs. When
we apply the on-demand loading optimization, Morula uses
10.8 MB more memory on average, which is 2.9 MB less than
Morula before the optimization. This memory saving results
from not loading unnecessary Dalvik classes. Compared with
the Wrap model, Morula shows similar memory costs because
these two models are the same in terms of memory usage per
app.

Note that the memory usage difference between Zygote and
Morula stays the same across all five apps. This is because
the memory difference between Morula and Zygote are due
to additional the process initialization steps in Morula. This
suggests that Morula’s memory use overhead is independent
of a specific app’s features, and devices deploying Morula
would have fixed memory costs around 13.7 MB to execute
each app4. Considering recent mobile device trends providing
more than 2 GB RAM [23], this static memory cost for running
an app should not be of significant concern to guarantee
ASLR security. For low-end devices having less than 512
MB RAM, however, this cost would not be acceptable. In
this case, selective randomization can be applied with proper
understanding of its security trade-offs (see Section VI).

Battery Consumption. Battery life is an important resource
for mobile devices. Since Morula clearly performs more com-
putations than the Zygote process creation model, Morula
should consume more battery power than the Zygote model.
We made the following measurements to determine how much
more power is consumed by Morula. First, we booted our
device with the Zygote process creation model and fully
charged the battery. Then, the power cable was detached
and the Android web browser (com.android.browser)
was executed every 10 seconds. We then booted our de-
vice using the Morula process creation model and per-
formed the same executions of the Android web browser
under this system. For both measurements, we gathered cur-
rent battery capacity over time by reading the contents of
/sys/class/power_supply/battery/capacity.

4It is possible to further reduce this fixed memory cost by having apps share
the VM or heap, but it should be carefully done as sharing such heaps may
not be secure (e.g., OpenSSL’s PRNG states initialized by Zygote [27]).

0 100 200 300 400 500

Number of executions

80

85

90

95

100

B
at

te
ry

ca
pa

ci
ty

(%
)

Zygote
Morula

Fig. 11. Remaining battery life over the number of application executions.
Morula requires additional computations compared to Zygote. We executed
the Android web browser every 10 seconds and estimated the battery life for
both Zygote and Morula. Morula imposes 0.5% extra battery consumption in
the most active use case, which we consider negligible overhead.

Figure 11 shows battery capacity vs. the number of ex-
ecutions while plotting linear fit as a solid line. The fit line
indicates that there will be 0.5% more power consumption if
the user executes an app 100 times. We believe that most users
would not launch an app more than 100 times between charges,
thus they should not notice the increase in power consumption
using Morula.

C. Compatibility Tests

To show Morula still meets the requirements of a compat-
ible Android platform, we ran the Android Compatibility Test
Suite (CTS) distributed by Google [5]. CTS offers compre-
hensive unit tests on various Android modules and functions.
We ran system and security related test packages as shown
in Figure 12. Among the 4,693 test cases we ran using CTS
(version 4.2 r4), Morula passed 4,686 cases. Both Zygote and
Morula failed on the same 7 test cases, and these were not
related to either of the process creation models; app failed
two cases because of the incompatibility of camera and GPS
device drivers we installed, permission2 failed three cases
because our testing device cannot send SMS, security and
appsecurity failed one case, respectively, because testing
units had bugs in packaging signatures [7, 8]. This implies that

modifications to Android to implement Morula do not break
Android compatibility, and we believe Morula is quite ready
to be used for Android end-users.

Test package #Tests #Failed
Zygote Morula

accessibility 25 0 0
accounts 28 0 0
admin 12 0 0
app 297 2 2
dalvik 51 0 0
libcore 3510 0 0
database 261 0 0
os 300 0 0
permission 149 0 0
permission2 15 3 3
security 37 1 1
appsecurity 8 1 1

Fig. 12. Android Compatibility Test Suite (CTS) results. Morula shows the
same compatibility test results as Zygote, and the failed test cases in both
models were not related to either of the process creation models. The prefixes
on test package names were removed for simple representations.

VI. DISCUSSION

Security Implications for Other Zygote-Based Systems. The
concept of the Zygote process creation model is not only used
for Android, but also used for other systems including the
Chromium OS and the Chromium browser. The reason for
using the Zygote model varies depending on the environment.
For example, Chromium in Linux uses it to keep a reference
to original binaries/libraries. As a result, after being updated in
runtime, Chromium can keep running without version compat-
ibility issues with newly updated binaries/libraries [48]. As we
have shown, the Zygote model can be a possible attack surface
because all child processes inherit resources, including mem-
ory layouts, from their parent process. Although Chromium
only relies on the Zygote model for rendering processes, it
is possible to have cross attacks involving multiple rendering
processes or security related resource leaks initialized by the
parent process.

Limitations of Selective Randomization. Selective random-
ization aims to balance the security gain and performance
penalty. Thus, selective randomization does not protect An-
droid from the attacks described in Section III because it
provides the unique address space layouts only for selective
apps. This indicates that a system deploying selective ran-
domization can still be vulnerable to our ASLR attacks. For
example, even if the app is distributed without native code
components, it can be still exposed to address leak vulner-
abilities while running the default system libraries loaded by
Zygote. Although the possibility of having such vulnerabilities
should be low, we recommend device vendors deploy selective
randomization only if the Morula design cannot be applied for
the whole system (i.e., low-end devices with limited computing
resources). The security limitation of selective randomization
stems from the fact that an app still runs native code in default
system libraries even if it does not contain its own native code
component. To handle this limitation, control-flow analysis can
be performed on the app to see whether it actually runs (or
heavily depends) on native code.

VII. RELATED WORK

ASLR has been considered an effective defense mechanism
for mitigating exploitation of security bugs by increasing diver-
sity in address space layout of a program [39]. ASLR-enabled
systems, combined with DEP, have successfully mitigated
attack techniques such as arbitrary code execution or return-
oriented programming (ROP).

ASLR Attacks/defenses. As modern commodity OSes provide
ASLR/DEP defense mechanisms by default [24, 43], attack
techniques also try to evolve to bypass ASLR/DEP. One
example is to brute-force insufficient randomness in memory
layout [30, 39]. Another example is to generate exploits based
on memory layout extrapolated from leaked pointers, type
confusion (heap overflow), and use-after-free bugs [35, 37].
Furthermore, by repeatedly abusing memory disclosures, an
attacker can learn the entire memory layout of a system and
chain ROP gadgets on the fly [41]. Moreover, it is possible
for attackers to target non-randomized components of an
application. For example, Flash, Java, and the .NET runtime
in IE8/9/10 [42, 44] are well-known targets for ROP-gadgets
to break ASLR/DEP in Windows.

With increasing use of bytecode interpreters [13], JIT
compilation, which optimizes performance by compiling byte
code to native instructions, opens other threats for breaking
ASLR/DEP [11, 15]. Many commonly utilized attack vectors,
such as JavaScript, are being compiled to native code via JIT
compilation, providing attackers the means to convert their
bytecode to a native executable. However, these attacks are
only effective in breaking specific applications, so mitigation
mechanisms such as anomaly detectors [14], are already de-
ployed and used in commercial products [34].

Researchers also explored interesting ways to estimate
target addresses for attacks by using cache or hash collision,
both in the OS kernel [25] and in web browsers [2]. However,
we believe ASLR-enabled systems raise a high bar for attack-
ers to compromise servers [47] and mobile devices, which
encounter attacks via small sets of interfaces like HTTP or
media streaming.

Attacks/defenses on Android. We classify common attacks
on Android into two types: the first is an exploit of underlying
system components [45, 46, 51], which are privileged and
separated processes in Linux. The other is abuse of over-
privileged application permissions [9, 19, 20, 26, 49]. Accord-
ing to Lookout’s Android Threat Report [36], one emerging
problem on Android is the repackaged trojan attack, which
prevents users from distinguishing an official and legitimate
application from a trojan [18, 50]. For example, 250,000 users
downloaded a disguised trojan application, DroidDream [36].
Therefore, we believe our local trojan attacks will become
more critical to mobile users in the near future, and the ASLR
solution in Morula can mitigate the threats effectively.

Although Android already ships with a variety of security
features, such as UID separation and digitally signed appli-
cations [38, 40], we found that individual security bugs in
applications can seriously threaten the entire system if Android
does not fix the ASLR problem in the default Zygote process
creation model.

Adopting ASLR/DEP in Mobile Devices. As exploits against

mobile platforms have increased, vendors outside the Android
platform have also begun to include defensive mechanisms
even at the cost of performance. For example, iOS 4 [29]
supports ASLR of applications and the kernel.

Mitigating ASLR problems on Android. The most relevant
work to Morula is Retouching [12], a mechanism that ran-
domizes prelinked code when deploying Android applications.
Since Retouching randomizes at the time of deployment or
update, it does not require direct kernel changes. Therefore,
Retouching provides differing memory layouts across differ-
ent devices. However, Retouching has uniform address space
layouts for all running apps in a device as it uses the Zygote
process creation model, and thus it is still vulnerable to remote
coordinated and local trojan attacks.

VIII. CONCLUSION

In this paper, we presented a new security threat to
Android’s ASLR and proposed Morula as a countermeasure.
We showed that Zygote, Android’s low-level process creation
system, can severely weaken the effectiveness of ASLR, an
existing and standard security mechanism. We demonstrated
two attack scenarios where either a remote attacker or a local
trojan app can exploit the weakened ASLR and execute code
by means of return-oriented programming. As a replacement
for the insecure Zygote, Morula fortifies the weakened ASLR
on Android using three key designs and optimizations: the
Morula process creation model, on-demand loading of Dalvik
classes, and selective randomization of app memory layouts.
We conducted a thorough evaluation, showing that Morula
restores the effectiveness of ASLR on Android to the same
level as on Linux, and at the same time maintains app launch
time on par with or even better than Zygote. Morula pays
an acceptable cost of increased app memory usage for much
improved security, and imposes no obvious overhead to other
resources, including battery power. Morula’s design yields
an easy-to-adopt and backward-compatible implementation,
which is ready to be merged into the open source branch of
Android OS as well as vendor-customized branches.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments. We thank William Enck for the
thoughtful feedback that guided the final version of this paper.
We also thank the various members of our operations staff
who provided proofreading of this paper. This material is
based upon work supported in part by the National Science
Foundation under Grants No. CNS-1017265, CNS-0831300,
and CNS-1149051, by the Office of Naval Research under
Grant No. N000140911042, by the Department of Homeland
Security under contract No. N66001-12-C-0133, and by the
United States Air Force under Contract No. FA8650-10-C-
7025. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation, the Office of Naval Research, the Department of
Homeland Security, or the United States Air Force.

REFERENCES

[1] Android Web Browser GIF File Heap-Based Buffer Overflow. http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0985.

[2] Leaking information with timing attacks on hashtables.
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-
timing-attacks-on-hashtables-part-1.

[3] SRS One Click Root for Android. http://www.srsroot.com/.
[4] Type confusion in WebKit. http://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2013-0912, 2013.
[5] Android Compatibility Program. Android Compatibility. http://source.

android.com/compatibility.
[6] Android Open Source Project. Introducing ART. http://source.android.

com/devices/tech/dalvik/art.html.
[7] Android Open Source Project Issue Tracker. an-

droid.security.cts.PackageSignatureTest failuer in android CTS
R4. https://code.google.com/p/android/issues/detail?id=19030.

[8] Android Open Source Project Issue Tracker. CTS
com.android.cts.appsecurity.AppSecurityTests testPermissionDiffCert
FAIL. https://code.google.com/p/android/issues/detail?id=53532.

[9] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: Analyzing the
Android Permission Specification. In ACM conference on Computer
and communications security (CCS ’12), 2012.

[10] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine
learning. springer New York, 2006.

[11] D. Blazakis. Interpreter exploitation. In USENIX conference on
Offensive technologies (WOOT ’10), 2010.

[12] H. Bojinov, D. Boneh, R. Cannings, and I. Malchev. Address space
randomization for mobile devices. In ACM conference on Wireless
Network Security (WiSec ’11), 2011.

[13] H. Chen, C. Cutler, T. Kim, Y. Mao, X. Wang, N. Zeldovich, and M. F.
Kaashoek. Security bugs in embedded interpreters. In ACM SIGOPS
Asia-Pacific Workshop on Systems (APSys ’13), 2013.

[14] P. Chen, Y. Fang, B. Mao, and L. Xie. JITDefender: A defense against
JIT spraying attacks. In Future Challenges in Security and Privacy for
Academia and Industry. Springer, 2011.

[15] Y. I. Chris Rohlf. Attacking Clientside JIT Compilers. In Black Hat
USA, 2011.

[16] coolkaveh. VLC media player 2.0.4 suffers from buffer overflow. https:
//trac.videolan.org/vlc/ticket/7860.

[17] J. Easton-Ellett. Android 4.1 Jelly Bean Features ASLR, Making It
Much Harder To Exploit. http://www.ijailbreak.com/android/android-4-
1-jelly-bean-features-alsr.

[18] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile
phone application certification. In ACM conference on Computer and
communications security (CCS ’09), 2009.

[19] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. Sheth. Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’10), 2010.

[20] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android
application security. In USENIX Security Symposium (Security ’11),
2011.

[21] C. Evans. Some Random Observations on Linux ASLR.
http://scarybeastsecurity.blogspot.com/2012/03/some-random-
observations-on-linux-aslr.html, 2012.

[22] D. Fisher. Android 4.1 Jelly Bean Includes Full ASLR Implemen-
tation. http://threatpost.com/android-41-jelly-bean-includes-full-aslr-
implementation-071612, 2012.

[23] M. Flores. Google Nexus 5 Review. http://www.techradar.com/us/
reviews/phones/mobile-phones/google-nexus-5-1194974/review.

[24] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced operating
system security through efficient and fine-grained address space ran-
domization. In USENIX Security Symposium (Security ’12), 2012.

[25] R. Hund, C. Willems, and T. Holz. Practical timing side channel attacks
against kernel space aslr. In IEEE Symposium on Security and Privacy
(Oakland ’13), 2013.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0985
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0985
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1
http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1
http://www.srsroot.com/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0912
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0912
http://source.android.com/compatibility
http://source.android.com/compatibility
http://source.android.com/devices/tech/dalvik/art.html
http://source.android.com/devices/tech/dalvik/art.html
https://code.google.com/p/android/issues/detail?id=19030
https://code.google.com/p/android/issues/detail?id=53532
https://trac.videolan.org/vlc/ticket/7860
https://trac.videolan.org/vlc/ticket/7860
http://scarybeastsecurity.blogspot.com/2012/03/some-random-observations-on-linux-aslr.html
http://scarybeastsecurity.blogspot.com/2012/03/some-random-observations-on-linux-aslr.html
http://threatpost.com/android-41-jelly-bean-includes-full-aslr-implementation-071612
http://threatpost.com/android-41-jelly-bean-includes-full-aslr-implementation-071612
http://www.techradar.com/us/reviews/phones/mobile-phones/google-nexus-5-1194974/review
http://www.techradar.com/us/reviews/phones/mobile-phones/google-nexus-5-1194974/review

[26] S. Jana and V. Shmatikov. Memento: Learning secrets from process
footprints. In IEEE Symposium on Security and Privacy (Oakland ’12),
2012.

[27] S. H. Kim, D. Han, and D. H. Lee. Predictability of android openssl’s
pseudo random number generator. In ACM conference on Computer
and communications security (CCS ’13), 2013.

[28] N. Kralevich. Address Space Layout Randomization in
Android. https://groups.google.com/forum/#!msg/android-security-
discuss/Af71Z2QYdMo/u1miB1A9UOwJ.

[29] T. Mandt. Attacking the iOS Kernel: A Look at ’evasi0n’.
http://blog.azimuthsecurity.com/2013/03/attacking-ios-kernel-look-at-
evasi0n.html.

[30] T. Muller. ASLR Smack & Laugh Reference. http://www-users.rwth-
aachen.de/Tilo.Mueller/ASLRpaper.pdf, Feb. 2008.

[31] J. Oberheide. A look at ASLR in Android Ice Cream Sandwich
4.0. https://www.duosecurity.com/blog/a-look-at-aslr-in-android-ice-
cream-sandwich-4-0, .

[32] J. Oberheide. Exploit Mitigations in Android Jelly Bean
4.1. https://www.duosecurity.com/blog/exploit-mitigations-in-android-
jelly-bean-4-1, .

[33] L. Page. Google I/O 2013 Keynote. http://www.google.com/events/io/
2013/, 2013.

[34] P. Ratanaworabhan, V. B. Livshits, and B. G. Zorn. NOZZLE: A defense
against heap-spraying code injection attacks. In USENIX Security
Symposium (Security ’09), 2009.

[35] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi. Surgically re-
turning to randomized lib(c). In Annual Computer Security Applications
Conference (ACSAC ’09), 2009.

[36] L. M. Security. Lookout Mobile Threat Report. https://www.lookout.
com/ downloads/lookout-mobile-threat-report-2011.pdf.

[37] F. J. Serna. The info leak era on software exploitation. In Black Hat
USA, 2012.

[38] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer.
Google Android: A comprehensive security assessment. Security &
Privacy, IEEE, 8(2), 2010.

[39] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh.
On the effectiveness of address-space randomization. In ACM confer-
ence on Computer and communications security (CCS ’04), 2004.

[40] S. Smalley. The Case for Security Enhanced (SE) Android. https:
//events.linuxfoundation.org/images/stories/pdf/lf abs12 smalley.pdf.

[41] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi. Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization. In IEEE Symposium on
Security and Privacy (Oakland ’13), 2013.

[42] A. Sotirov and M. Dowd. Bypassing browser memory protections in
windows vista. In Black Hat USA, 2008.

[43] The PaX Team. PaX. http://pax.grsecurity.net.
[44] S. J. Vaughan-Nichols. Pwn2Own: Down go all the browsers.

http://www.zdnet.com/pwn2own-down-go-all-the-browsers-
7000012283.

[45] T. Vidas, D. Votipka, and N. Christin. All your droid are belong to us: a
survey of current Android attacks. In USENIX conference on Offensive
technologies (WOOT ’11), 2011.

[46] T. Vidas, D. Votipka, and N. Christin. All your droid are belong to
us: A survey of current Android attacks. In USENIX conference on
Offensive technologies (WOOT ’11), 2011.

[47] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code. In
ACM conference on Computer and communications security (CCS ’12),
2012.

[48] C. Wiki. The use of zygotes on Linux. https://code.google.com/p/
chromium/wiki/LinuxZygote.

[49] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The impact of vendor
customizations on Android security. In ACM conference on Computer
and communications security (CCS ’13), 2013.

[50] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt. Identity, location, disease and more: Inferring

your secrets from Android public resources. In ACM conference on
Computer and communications security (CCS ’13), 2013.

[51] Y. Zhou and X. Jiang. Dissecting Android malware: Characterization
and evolution. In IEEE Symposium on Security and Privacy (Oakland
’12), 2012.

https://groups.google.com/forum/#!msg/android-security-discuss/Af71Z2QYdMo/u1miB1A9UOwJ
https://groups.google.com/forum/#!msg/android-security-discuss/Af71Z2QYdMo/u1miB1A9UOwJ
http://blog.azimuthsecurity.com/2013/03/attacking-ios-kernel-look-at-evasi0n.html
http://blog.azimuthsecurity.com/2013/03/attacking-ios-kernel-look-at-evasi0n.html
https://www.duosecurity.com/blog/a-look-at-aslr-in-android-ice-cream-sandwich-4-0
https://www.duosecurity.com/blog/a-look-at-aslr-in-android-ice-cream-sandwich-4-0
https://www.duosecurity.com/blog/exploit-mitigations-in-android-jelly-bean-4-1
https://www.duosecurity.com/blog/exploit-mitigations-in-android-jelly-bean-4-1
http://www.google.com/events/io/2013/
http://www.google.com/events/io/2013/
https://www.lookout.com/_downloads/lookout-mobile-threat-report-2011.pdf
https://www.lookout.com/_downloads/lookout-mobile-threat-report-2011.pdf
https://events.linuxfoundation.org/images/stories/pdf/lf_abs12_smalley.pdf
https://events.linuxfoundation.org/images/stories/pdf/lf_abs12_smalley.pdf
http://pax.grsecurity.net
https://code.google.com/p/chromium/wiki/LinuxZygote
https://code.google.com/p/chromium/wiki/LinuxZygote

	Introduction
	Background
	App Process Creation on Android
	Address Space Layout Randomization on Android

	Exploiting Android's ASLR
	ASLR Bypasses Made (Relatively) Easy
	Attacks on Real Apps
	Quantitative Analysis of Attackers' Advantage

	Morula: Effective and Practical Mitigation
	An Intuitive Idea and Limitations
	Performant Process Creation without Damaging ASLR
	Further Optimizations Exploiting System Characteristics
	System Implementation

	Evaluation
	ASLR Effectiveness
	Performance Overheads
	Compatibility Tests

	Discussion
	Related Work
	Conclusion

