
BLADE: An Attack-Agnostic Approach for Preventing
Drive-By Malware Infections

Long Lu† Vinod Yegneswaran‡ Phillip Porras‡ Wenke Lee†

†College of Computing, Georgia Institute of Technology ‡SRI International
{long, wenke}@cc.gatech.edu {vinod, porras}@csl.sri.com

ABSTRACT
Web-based surreptitious malware infections (i.e., drive-by downloads) have
become the primary method used to deliver malicious software onto com-
puters across the Internet. To address this threat, we present a browser-
independent operating system kernel extension designed to eliminate drive-
by malware installations. The BLADE (Block All Drive-by download Exploits)
system asserts that all executable files delivered through browser down-
loads must result from explicit user consent and transparently redirects ev-
ery unconsented browser download into a nonexecutable secure zone on
disk. BLADE thwarts the ability of browser-based exploits to surrepti-
tiously download and execute malicious content by remapping to the filesys-
tem only those browser downloads to which a programmatically inferred
user-consent is correlated, BLADE provides its protection without explicit
knowledge of any exploits and is thus resilient against code obfuscation
and zero-day threats that directly contribute to the pervasiveness of today’s
drive-by malware. We present the design of our BLADE prototype imple-
mentation for the Microsoft Windows platform, and report results from an
extensive empirical evaluation of its effectiveness on popular browsers. Our
evaluation includes multiple versions of IE and Firefox, against 1,934 active
malicious URLs, representing a broad spectrum of web-based exploits now
plaguing the Internet. BLADE successfully blocked all drive-by malware
install attempts with zero false positives and a 3% worst-case performance
cost.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protection

General Terms
Security

Keywords
Malware Protection, Drive-by Download,
Unconsented-Content Execution Prevention

1. INTRODUCTION
As highlighted by the recent Aurora exploit used in the Google

espionage attack [2], vulnerable web browsers and the growing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

plethora of their complex applets have now become the Achilles
heel of enterprise network security. This problem is compounded
by the increasing diversity of browser plug-in applications where
a wide variety of published and zero-day browser-based exploits
provide malware developers with a continual stream of infection
vectors from which to disseminate malware throughout the Inter-
net. In fact, client-side exploits now dominate the traditional push-
based malware propagation strategies that were well established by
Internet scanning worms and viruses [20, 26].

Surreptitious delivery exploits, which are the focus of this pa-
per, represent a particularly insidious form of exploit, whereby the
mere connection to a web server can result in the installation of
malware on the client machine. Here, no user consent is required,
and no symptoms of the infection may ever manifest on the victim’s
host. Rather, the malicious web server silently passes malicious
shellcode to the victim browser, which then forces the browser to
download, store, and silently execute a malicious application. The
installed malware could then be used for identity theft, to exfiltrate
information [18], launch denial-of-service attacks [11], or partici-
pate in botnet activity [8, 28].

Our Approach: As a significant and tangible countermeasure
against such attacks, we propose BLADE, a system that effectively
immunizes a host against all forms of drive-by download malware
installs. A distinguishing aspect of the BLADE design is that it
is both attack and browser agnostic, i.e., it neither requires exploit
signatures nor changes to the browsers. Rather, BLADE relies on
limited semantic knowledge about a handful of user interface (UI)
elements common across web browser applications. While our im-
plementation is focused on browser protection, the approach could
be generalized to other network-capable applications (e.g., email
clients, instant messengers, media players) that are subject to drive-
by exploits.

BLADE’s design principle, unconsented-content execution pre-
vention, is motivated by a fundamental practice in the way browsers
handle web stream content. That is, when receiving data content
from a web server, browsers handle the content they receive in
either of two basic ways: supported file types (e.g., html, jpeg,
pdf) and unsupported file types (e.g., exe, zip). While browsers
silently fetch and render all supported file types, they must prompt
the user when an unsupported type is encountered. However, the
objective of the drive-by download is to deliver malicious bina-
ries through the browser using methods that essentially bypass the
standard unsupported-type user prompt interactions. BLADE’s ap-
proach is to intercept and impose execution prevention of all down-
loaded content that has not been directly consented to by any user-
to-browser interaction. This is in contrast to sandboxing techniques
[9] that do not track user interaction and permit limited execution
of untrusted code in tightly controlled environments.

To prevent unconsented-content execution, BLADE introduces

three key operating system (OS)-level capabilities by coordinating
its components in the kernel space, as shown in Figure 1. First,
BLADE introduces user-interaction tracking as a means to collect
user download authorizations expressed during interactions with
browsers. BLADE captures on-screen consent-to-download dialog
windows via a Screen Parser module and tracks the user’s physical
interactions (e.g., mouse clicks) with these dialog windows via a
Hardware Event Tracer. Second, BLADE introduces consent cor-
relation as a means to discern “transparent” downloads from those
that involve direct user authorization. Third, BLADE uses disk
I/O redirection to efficiently contain disk footprints of unconsented
data delivered through supervised processes.1 File content created
and manipulated by supervised processes is stored in a nonexe-
cutable location created and managed by BLADE. This secure zone
represents virtual offshore storage accessible only from supervised
processes as a result of the transparent disk I/O redirection. The
redirection logic provides supervised processes with a modified file
system view to maintain functional consistency, which renders the
impression that all disk operations are carried out in their respective
locations. Files in the secure zone are prevented from being loaded
into the memory as executables (in the case of Windows, load oper-
ations of .exe, .dll, .sys, and etc. are disallowed). BLADE’s ability
to identify unconsented file content and enforce execution preven-
tion distinguishes it from techniques such as filesystem sandbox-
ing, where all file operations are blindly jailed while allowing the
malware to execute inside the sandbox.

We have implemented a prototype version of BLADE for Win-
dows platforms and evaluated it with browsers commonly targeted
by drive-by download attacks, including multiple versions of In-
ternet Explorer (IE) and Firefox. Our evaluation results show that
BLADE accurately intercepts drive-by download infections from
all the 1,934 sites we have tested, including those that are heavily
obfuscated to circumvent other defense techniques. Our perfor-
mance testing shows that BLADE introduces only minimal over-
head on variable workloads.

Contributions: In summary, the contributions of our work include
the following:
• A novel and effective model for describing and thwarting

drive-by download attacks.

• Unconsented-content execution prevention as a new method-
ology for web-based malware prevention.

• Design and implementation of the BLADE prototype on Win-
dows platforms.

• Comprehensive empirical evaluation of BLADE on real-world
threats and benign workloads.

The remainder of the paper is organized as follows. In § 2, we
discuss the BLADE approach, design objectives and challenges. In
§ 3, we describe the architecture and implementation of BLADE
components. In § 4, we measure BLADE’s performance impact
and evaluate the efficacy of the system against real and obfuscated
exploits. In § 5, we analyze the security of BLADE system and its
limitations. In § 6, we discuss related work. Finally, § 7 concludes
with a summary and discussion of potential future work.

2. THE BLADE APPROACH TO DRIVE-BY
EXPLOIT DEFENSE

The web is an increasingly treacherous place. The mere act of
connecting one’s web browser to the wrong website may result in
1We use the term “supervised processes” to broadly refer to pro-
cesses actively monitored by BLADE, including all browsers and
their child processes such as plug-ins, to which remote executions
may be injected by drive-by exploits.

the installation of an application without the user’s authorization or
knowledge. Furthermore, attempting to limit one’s browsing be-
havior to reputable and well-known websites is becoming a less
effective strategy, as malware developers are actively infiltrating
these sites to spread their malicious links [20].

To understand how BLADE defends client browsers from the
current generation of drive-by exploits, we first provide a more re-
fined explanation of how drive-by exploits operate. We can then
identify the underlying common transaction performed by drive-by
exploits that BLADE ultimately aims to stop.

2.1 Drive-By Exploits
A drive-by download can be described as a series of steps that

the adversary performs to achieve the surreptitious download and
installation of malware via the victim’s browser. The goal of the
drive-by exploit is to take effective, temporary control of the client
web browser for the purpose of forcing it to fetch, store, and then
execute a binary application (e.g., .exe, .dll, .msi, .sys) without re-
vealing to the human user that these actions have taken place. We
present the drive-by exploit strategy as a series of phases.

Shellcode injection phase: The first challenge in delivering the
drive-by exploit is that of gaining temporary control of the browser.
Uniformly, all drive-by exploits begin with a remote code injection,
such as buffer overflow exploit against some component within the
browser process, e.g., the ActiveX interpreter, a multimedia plug-
in, the PDF helper object, the Flash player etc.

Shellcode execution phase: Regardless of which exploit tech-
nique is selected by the malware author, the objective of this exploit
is to inject a small shellcode segment within the browser process to
conduct covert binary installation (this essentially defines the attack
as a drive-by exploit).

Covert binary install phase: The final phase of the drive-by
exploit is the sequence of steps leading to the final, permanent in-
fection of the client host. Here, the shellcode effectively coerces
the now tainted browser into fetching a remote malware applica-
tion from some remote source on the Internet, storing it within the
filesystem and executing it on the victim’s host.

2.2 The BLADE Threat Model, Design
Objectives, and Challenges

In our threat model, an adversary conducting drive-by download
attacks is allowed to hijack control of a vulnerable browser and in-
ject remote code. BLADE assumes that this attacker should have
no persistent malware deployed on the target host in advance, as
otherwise the goal of the attack would have been already achieved.
Specifically, there is no rootkit from the adversary installed on the
system, i.e., the OS kernel is trusted. Although scenarios where
the assumed attacker can remotely exploit a kernel vulnerability
via a browser exist, which are out of the scope of this model, we
argue that they are extremely rare and could be addressed by in-
tegrating orthogonal OS integrity protection technologies, such as
hypervisor-based protections, with BLADE.

BLADE does not attempt to halt the drive-by exploit at the shell-
code injection phase or the shellcode execution phase. Given the
overwhelming diversity of browser extensions, modules, and code
changes that are continually churned out by the high-paced browser
development community, the task of stopping all shellcode injec-
tions is a truly daunting challenge. Even with the introduction
of OS-level protections such as DEP and ASLR and browser-level
sand-boxing, drive-by exploits are still succeeding [16].

Rather, BLADE incorporates a different tactic in fighting drive-
by attacks. From BLADE’s perspective, the drive-by download at-
tack conducts a series of steps designed to bypass the normal user-
content-handling procedure that should be performed whenever a
browser attempts to store this data to disk. The fetched binary itself

User

File
System

Secure
Zone

I/O
Redirector

Input Device
Driver

Windowing
Supervisor

File System
View

Disk
 I/O

User Interactions

Browsers

Screen
Parser

H/W Evt.
Tracer

Network
I/O

Transport
Driver Correlator

BLADE

On-Screen Events

Kernel Space

Figure 1: Overview of the BLADE system architecture

represents an unsupported browser type that cannot be handled and
rendered directly by the browser, but must be delivered through the
standard user-initiated consent-to-download dialog. BLADE aims
to disrupt the covert binary install phase, completely agnostic of
which browser component was exploited or which shellcode injec-
tion strategy was employed to achieve the initial browser hijack.

BLADE’s core mission is to foil the execution by any program
entity (including the OS), of any on-disk data content received through
the browser process tree, unless that content can be correlated with
a user consent dialog event. BLADE enforces this requirement
while not interfering with normal browser operations in any way.
Specifically, we can accommodate automated software updating
that is a common practice among browsers and their plug-ins through
source domain whitelisting 2. Browser native code execution mech-
anisms (e.g., Native Client) are not affected by BLADE since they
rely on the preinstalled client, rather than the OS, to load and exe-
cute the code.

Inherent in this task are several key technical challenges, which
we outline here and further cast as design goals that we directly
address in this paper:

• Real-time user authorization capture and interpretation – BLADE
must monitor user-to-browser interaction events to capture explicit
user authorizations that permit upcoming download actions. From
each captured authorization, BLADE must extract identity infor-
mation pertaining to the expected download (i.e., remote URL, file
name, and local path) in order to uniquely identify the resulting file.

• Robust correlation between authorization and download con-
tent – BLADE must programmatically distinguish user-initiated
browser downloads from unauthorized ones and reliably correlate
every authorization event with the corresponding binary stream that
is downloaded by the browser from the network.

• Stringent enforcement of execution prevention – Files containing
unauthorized download content must be stringently prevented from
execution, while other types of access from supervised processes
are allowed. This enforcement must not impede normal operations
of browsers as well as other programs.

• Browser agnostic enforcement – BLADE must not depend on ei-
ther the integrity of browsers or their internal handling of tasks.
We must assume that new browser attack strategies will continue to
evolve along with the rapid development of new browser technolo-
gies. Browser updates or potential browser compromises caused
by inevitable software vulnerabilities must not affect the protection
quality BLADE provides.

2Our current prototype does not implement this capability.

• Exploit and evasion independence – BLADE’s enforcement mech-
anism must be entirely agnostic to exploits employed as the first
step to subvert the browser into performing drive-by downloads,
and thus be immune to all kinds of sophisticated evasion techniques
including code obfuscations and zero-day vulnerabilities.

• Efficient and usable system performance – BLADE’s performance
impact on browser content handling must be negligible. Overall,
BLADE should not impose perceptible delays to normal browser
operations, and have no impact on non-browser host operations.

Considering the threat model and design trade-offs, we believe
that placing BLADE as a dynamic loadable driver into the OS is a
viable design choice to achieve our goals listed above. To reliably
capture and interpret user interactions and guarantee unforgeability,
BLADE has to reside at least as low as the OS. Even in scenarios
where virtual machine monitoring systems are deployed, having
BLADE inside the kernel is more efficient than placing BLADE-
equivalent functionalities inside the hypervisor and more accurate
than solely using virtual machine introspection.

3. THE BLADE SYSTEM ARCHITECTURE
Figure 1 illustrates the BLADE software architecture and its core

components. The front-end components, including the Screen Parser,
Hardware-Event Tracer and Supervisor are responsible for collect-
ing information displayed on the screen and tracking user interac-
tions when necessary. The Screen Parser monitors kernel window-
ing events as the status of on-screen UI changes in real time. It
signals the Supervisor upon the appearance of a download consent
dialog (or authorization dialog) on the screen foreground and re-
ports necessary information parsed from the screen (see § 3.1). A
download consent dialog is defined as any prompt (dialog box) cre-
ated by browsers or plug-ins seeking download permission from
the user. Due to the well-defined application interface used by
commodity browsers to implement download confirmation dialogs,
a small number of signatures (one or two per browser family) are
needed to capture all download consent events. Each signature cap-
tures the external appearance and the internal hierarchy shared by
all UI instances of that class. The Screen Parser uses these sig-
natures to discover download consent dialogs, locate the respec-
tive positions of confirmation elements on these UI dialogs (e.g.,
the “Save” button), and extract the download identity information
(e.g., URL, file name) to be used in the correlation process. Upon
receiving the signal from the Screen Parser, the Supervisor invokes
the Hardware-Event Tracer to intercept subsequent mouse and key-
board input events that would trigger the download confirmation.
BLADE relies on hardware events as the only dependable source

Screen Parser

(1) Download consent
UI appeared

Supervisor H/W Event
Tracer

(2) Start tracing
H/W Event

(4) User consent
captured

I/O
RedirectorCorrelator

(3)Start
stream recording

(7) File content
comparison (8) Release

correlated
download

(5) Notify download
 authorization

(6) Correlation-

candidate

Figure 2: Download authorization workflow

of extracting user consent information due to their unforgeability
in our threat model (see § 3.3).

The Correlator and the I/O Redirector form the back end of the
BLADE system. They correlate inferred authorizations from the
front end with resulting downloads and enforce the nonexecution
policy for downloads that are not directly requested by the user.
The Correlator ensures BLADE’s resistance to spoofing attacks
such as forged UI dialogs (discussed in § 5), by virtue of its capabil-
ity to validate the authenticity of the consequent file corresponding
to a user download consent. We define the download identity infor-
mation as (URL, Path), i.e., a 2-tuple of the remote URL and the
local storage path, to uniquely delegate a user download authoriza-
tion. The Correlator matches a file f with a tuple (u, p) when f is
saved at p with data content received from u (see § 3.4).

The I/O Redirector persistently guarantees that uncorrelated down-
loads can do no harm by establishing the secure zone. As its name
suggests, the I/O Redirector intercepts disk write operations initi-
ated from the browser process tree (namely, supervised processes)
and redirects them to the secure zone, where execution is explicitly
prohibited by blocking memory-section synchronizations. We de-
scribe this in more detail in § 3.5. By default all files downloaded
by supervised processes are transparently redirected to the secure
zone. Files that pass the download correlation process (i.e., where
the content written is indeed from the user-authorized remote URL)
are subsequently moved out of the secure zone back to their orig-
inal destination in the file system. This move is accomplished by
modifying file system metadata as opposed to copying the down-
loaded data, which can be finished in constant time. Our design
of the secure-zone-based I/O redirection with the capability to dis-
cern user-initiated downloads enables a generic defense strategy
that targets the common behavioral pattern shared by all drive-by
download attacks.

We now discuss the design details of the BLADE architecture
components, in the order of web download and authorization work-
flow as shown in Figure 2.

3.1 Screen Parser
BLADE’s download authorization lifecycle is triggered by the

appearance of download consent dialogs, which seek user’s per-
mission on downloads. Internally, every status change of UI ele-
ments causes a certain windowing event to be sent to the operating
system, which express the change by re-drawing the screen. For
instance, creating a new window causes an OBJ_CREATE event to
be generated on Windows platforms, which contains information
needed by the operating system to draw the new window on the
screen (e.g., position, size, text). The Screen Parser component
of BLADE relies on accurate interpretations of these windowing
events intercepted from within the OS to discover download con-

sent UI elements and effectively monitor content displayed on the
screen.

Since significant performance degradation can be introduced if
suboptimal methods are employed, this component merits consid-
erable care in implementation. For example, a naive option to im-
plement the Screen Parser is as a direct hook into windowing event
handlers. However, such implementation would block the window
drawing process while trying to recognize newly visible UI ele-
ments, and in turn, result in perceptible UI delays when the window
being parsed contains too many elements.

To optimize performance, BLADE implants an agent in user
space to prefilter irrelevant windowing events. It runs in parallel
with the window management routines, asynchronously filtering
and preparsing windowing events in the user space that would oth-
erwise incur significant kernel CPU cycles if directly handled by
the Screen Parser. The agent pipes its output to the Screen Parser,
which may represent a user consent dialog currently in focus. To
secure against interference from untrusted user-level programs, an
independent sanity checker in the Screen Parser cross-validates the
input from the agent by inspecting kernel memory objects repre-
senting the UI elements.

On the Windows platforms, handling only three types of events is
sufficient to completely cover the real-time changes of the currently
focused window: EVENT_SYSTEM_FOREGROUND, EVENT_SYSTEM_
MOVESIZEEND, and EVENT_SYSTEM_MINIMIZEEND. Key strokes
triggering a particular UI element can also be obtained as one of
the associated attributes. Screen information is parsed only if the
newly focused window is deemed to represent a request for down-
load permission.

UI signatures are used to identify download consent dialogs and
guide information extraction from these dialogs. Each signature
describing the internal composition shared across all UI instances
of a class is sufficiently general and accurate in capturing all di-
alogs with the same look and feel as the sample used for signa-
ture generation. Due to the uniform use of interfaces by current
browsers to request download permissions, there are only a hand-
ful of UI classes that serve this purpose, which also remain highly
stable across browser versions and regular updates. Hence, using
only two signatures for Firefox and one signature for IE, we can
successfully capture all forms of download notifications in these
browser families across versions.

Note that attempted evasions by faking user consent dialogs may
trigger a signature match, but cannot elude the Correlator (see § 3.4
for the correlation process).

3.2 Supervisor
As the first component loaded upon BLADE startup, the Super-

visor serves the role of coordinator for carrying out all tasks of
BLADE. It is charged with assigning tasks to other BLADE com-
ponents and coordinating their execution, as responding to the dif-
ferent event notifications from the Screen Parser. The Supervisor
also takes care of internal communications among all BLADE com-
ponents, including user-kernel communication backed by IOCTLs
(device input and output control), and kernel-kernel communica-
tion implemented by simply sharing a nonpaged pool across all
kernel components as a means of information exchange. Here,
spin-lock-based synchronizations are used to protect the integrity
of shared data.

Upon notification of the appearance of a download consent dia-
log, or a status change to an existing one, the Supervisor initiates
other kernel components accordingly, or resets them in response to
status changes. As shown in Figure 2, when a new relevant UI ele-
ment is discovered, the Hardware Event Tracer (H/W Event Tracer)
is triggered, with input information such as the on-screen locations
of download consent dialogs. Its task is to sense the user-invoked

hardware device signals that may indicate the user’s consent to per-
mit a pending download request. The Correlator also receives a
command from the Supervisor, indicating that the corresponding
stream recording process should start. A download authorization
is not recognized by the Supervisor until user consent is captured
by the H/W Event Tracer (in the form of physical mouse clicks or
keystrokes).

The Supervisor also actively maintains a complete list of super-
vised processes, on which most BLADE routines rely to function
correctly. For example, the I/O Redirector and the Correlator only
intercept file operations and record inbound network streams of su-
pervised processes. The list is initialized to be empty when BLADE
starts. A process p will be added into the list when (a) it is a newly
created browser process, (b) it is a newly created process spawned
by a supervised process, or (c) a remote thread is created within the
process by a supervised process. Tracking remote thread creations
is critical for blocking I/O redirection evasions, which may employ
a remote thread to carry out disk I/O on behalf of an unsupervised
process. The consequent list of this logic covers all possible execu-
tion entities that might either initiate a legitimate browser download
or be exploited to deliver surreptitious downloads. Listed processes
will be removed as they are terminated. The Supervisor registers
a callback routine for process creation and termination events by
calling PsSetCreateProcessNotifyRoutine.

3.3 Hardware Event Tracer
Once a download consent dialog is identified by the Screen Parser,

the next task is to interpret the user’s response. We developed the
Hardware Event Tracer (HET) to track user interactions with this
UI element by monitoring signals generated from the hardware to
the OS. Signals at this level can never be forged by attackers in our
threat model; thus, BLADE is immune to attempted evasions by
faking an affirmative response to user download consent events.

The HET starts with a notification from the Supervisor indicat-
ing the appearance of a certain download confirmation UI. The
HET’s role is to capture responses from the user’s mouse clicks
or keystrokes. During the tracing interval, which normally lasts a
few seconds, the HET looks for any mouse click whose on-screen
coordinates fall in the areas of download consent dialogs, and any
keystroke that can trigger these UIs. The HET also maintains some
state information in order to make accurate decisions regarding
whether the intercepted hardware events could finally trigger the
download consent. The HET terminates the tracing activity due to
status changes from the on-screen consent dialog (e.g., minimized,
unfocused).

Our current prototype implements the tracking routines only for
pointer input devices, which means that users can express their
consent only by using the mouse. However, adding support for
keyboard input using the same principle should be straightforward.
Moreover, the performance overhead introduced by the addition of
keyboard tracing is expected to be minimal simply because key-
board events are less frequent than mouse events in web browsing.

3.4 Correlator
One of the key challenges in BLADE is establishing the 1-1 map-

ping between user download authorizations and downloaded files.
The Correlator addresses this problem and ensures the authenticity
of user-consented file downloads. Guaranteeing authenticity pre-
vents potential attacks seeking to deliver a malicious download, ei-
ther by prompting deceptive dialogs or subverting benign browser
downloads.

Since BLADE is independent of the browser and treats it as a
black box, only the external behavior of the browser (e.g., inter-
actions with OS) is visible to it. Hence, the Correlator analyzes
information available in the OS kernel, oblivious to the internal

download handling of browsers. As browsers invariably rely on
the OS to provide network and file system capabilities, all kernel
drivers including the Correlator have the chance to peek into each
transaction and retrieve a wealth of information about it. For exam-
ple, network traffic incurred by a browser is fully transparent to the
Correlator (at multiple kernel system levels) while it is being pro-
cessed in the OS network protocol stack. Similarly, the Correlator
can intercept file system access operations from the browser.

The Correlator associates a file download with a user authoriza-
tion in two steps: it discovers the correlation candidate file, and
then validates its authenticity. We now demonstrate why a file that
passes these two steps while being correlated with a given user au-
thorization is assured to be in compliance with that authorization.

Recall the tuple form of an inferred user authorization discussed
earlier in this section (URL, Path). Here, we use the second ele-
ment, the destination path in the local storage, plus the file name as
a criteria for discovering the correlation-candidate. Whenever a file
has been written with the same path and name as that of a pending
authorization, the Correlator marks it as a correlation candidate and
starts the validation process immediately. We call it a candidate be-
cause the adversary in our threat model is able to replace the file
content after fully compromising the browser.

The first element of the authorization tuple, the source domain,
indicates the origin location of the file content and is used for source
validation. We implement the following source validation tech-
nique based on content comparison. First, we keep a log of inbound
transport-level stream for each TCP session created by supervised
processes, which is later compared with the download candidate. If
the content of a particular download-candidate appears in a stream
log that corresponds to the source URL recorded in the authoriza-
tion tuple, the candidate is validated and the correlation process
completes with the candidate being correlated with the user autho-
rization. Our content-comparison approach works even when en-
cryption is used (e.g., HTTPS, VPN), because browsers rely on OS
support to process transactions of this kind. The user-level APIs are
simply wrappers for kernel functions and therefore plaintext con-
tent can always be obtained by kernel drivers prior to encryption
(when sending) or after decryption (when receiving). Furthermore,
browser-level compression/encoding schemes (e.g., SDCH), which
only apply to web streams that are natively rendered by browsers,
do not interfere with the BLADE correlation process.

Although the source validation idea is straightforward, an effi-
cient comparison algorithm and a reliable implementation require
careful consideration. From a performance perspective, the Cor-
relator should avoid unnecessary stream logging and halt ongoing
log writes once they are deemed unnecessary. Moreover, stream
recording needs to be performed only when there is an incoming
authorized download file and needs to consider only inbound con-
tent. Hence, a new logging process will be initiated, only when
a download consent dialog requesting a download permission pops
up, and only on streams sharing the same remote endpoint as the au-
thorization dialog. A subtle issue is that the source of the download
file is identified by a URL on the authorization dialog, while the re-
mote end of a stream is identified by an IP address. The Correlator
performs a domain name lookup in the local DNS cache to resolve
the corresponding IP address(es). Integrity of the local DNS cache
is guaranteed in our threat model because it is being maintained by
a trusted kernel component. The logging terminates either when the
user denies the download request or after the last stacked authoriza-
tion permitting that source has been correlated with a file download.
As native browser downloaders are all single-threaded, our current
prototype does not support the case of multi-threaded downloads
where content of a single file comes from multiple streams.

3.5 I/O Redirector
BLADE introduces the secure zone (i.e., a virtual storage area) as

a mechanism to restrict execution of disk footprints that are caused
by supervised processes but not explicitly allowed by users. Unlike
sandboxing, which blindly isolates execution of untrusted code, the
secure zone of BLADE is intelligent enough to selectively contain
potential threats and ultimately prevent them.

The design philosophy of the secure zone is based on the closure
property of browser disk writes derived from our study of generic
disk access patterns by browsers. The robustness of this property
was evaluated by exercising popular browsers with multiple web
browsing workloads (see § 4.1 C).

Closure property: On a clean computer running commodity OS
and browsers, let P = {p | p : any browser process}, and F ,
Fauth, Fint and F ′ be four sets of files on disk:

F = {f | f : any file written by p, where p ∈ P};
Fauth = {fa | fa : any -authorized browser download};
Fint = F − Fauth (given Fauth ⊂ F is always true);
F ′ = {f ′ | f ′ : any file opened by p′, where p′ ∈ P̄};

We observe that Fint ∩ F ′ ≈ ∅. This implies that, except for user-
authorized download files (Fauth), any other file to which browser
process (P) writes data is not normally accessed by non-browser
processes (P̄). More generally, it indicates that the disk data that is
written by browsers without explicit user consent is well-contained
within an implicit scope on disk, and thus should not be accessed by
other processes or executed by any program entity. Discovering this
scope inspired our design of the secure zone. The I/O Redirector
plays a central role in managing the secure zone by enforcing the
following policies:

P1 : Any new file created by a supervised process is redirected
to the secure zone.

P2 : Any existing file modified by a supervised process is saved
as a shadow copy in the secure zone, without change to
the original file.

P3 : I/O redirection is transparent to supervised processes.
P4 : I/O redirection only applies to supervised processes. Files

in the secure zone can only be accessed via redirection.
P5 : No execution is allowed for files in the secure zone.
P6 : Any file correlated with a user download authorization is

remapped to the filesystem.

Together these policies enable a complete containment of disk
footprints affected by content delivered through browser processes
without user knowledge, while still preserving the browser usabil-
ity due to transparency.

Figure 3 provides a high-level overview of how the I/O Redirec-
tor handles the two types of file accesses in order to enforce P1 –
P3 listed above: the upper subfigure shows that the browser is try-
ing to write C:\a.exe to the disk (i.e., opening a file handle with
write privilege). Upon receiving the request, the I/O Redirector first
checks the existence of the file’s shadow copy “\SecureZone\
C\a.exe”. If it exists, i.e., the file has been previously created or
modified by the supervised process, the I/O Redirector immediately
forwards the request down to the file system driver with the target
being modified into the path of the shadow copy. Otherwise, the I/O
Redirector might need to create such a shadow copy before modify-
ing and redirecting the request, depending on whether the request
is to create a new file “Disk1\C\a.exe” or to modify/replace
an old one. Finally, the browser that obtains the returned file han-
dle is unaware that it is operating on a shadow copy of the file in
the secure zone. The lower subfigure shows that a read request is
redirected to the shadow copy “\SecureZone\C\a.htm” if it
exists. Otherwise, the request is passed down to the file system
without the need for redirection. The I/O Redirector also provides

Browsers

Secure
Zone Disk1

I/O Redirector

FileSys
View

(1) OpenFile:
 (to Write)
 C:\a.exe

File System
Driver

(3)Redirect
 OpenFile:
 \SecureZone\C\a.exe

(2)** CopyFile:
 \Disk1\C\a.exe
 To \SecureZone\C\a.exe

(4) File
 C:\a.exe
 Opened
 For Write

Browsers

Secure
Zone Disk1

I/O Redirector

FileSys
View

(1) OpenFile:
 (to Read)
 C:\a.htm

File System
Driver

(2) Redirect
 ReadFile:
 \SecureZone\C\a.htm

(3)* ReadFile:
 \Disk1\C\a.htm

(4) File
 C:\a.htm
 Opened
 For Read

 * (3) only happens if
 \SecureZone\C\a.htm does not exist.

 ** (2) only happens if
\Disk1\C\Downloads\a.exe exists and
 \SecureZone\C\a.exe does not exist.

User-Level
Kernel-Level

User-Level
Kernel-Level

Figure 3: Browser file access (top: write; bottom: read) request
processing by the I/O Redirector

a different file system view to supervised processes, which hides
the separation of files inside and outside the secure zone.

To enforce P4, which guarantees the nonpropagation property of
files in the secure zone, the I/O Redirector simply passes through
file access requests from processes that are not supervised (i.e., no
redirection happens), except for denying those that are obtaining
handles to files in the secure zone. The policy P5, file execution
prevention, is performed by blocking executable images from being
mapped into the memory. Specifically, the I/O Redirector intercepts
AcquireForSectionSynchronization operations on files
located in the secure zone. This is a necessary operation performed
by the Windows kernel to load all forms of executables including
normal program (.exe, .msi) startups, dynamic library (.dll) loads
and driver module (.sys) installations.

When the Correlator successfully matches a previously inferred
user download authorization with a file written to the secure zone,
the I/O Redirector is notified and the file is remapped back to the
filesystem instantly.

4. EVALUATION
We evaluate our BLADE prototype in terms of system effec-

tiveness and performance overhead. Our effectiveness evaluation
demonstrates the solid defense that BLADE provides against real-
world drive-by download attacks and its resilience to false posi-

!
!
!
!
!
!
!
!

!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!

! "#$%&! "'()!
*#+,$,-)!

.%&+)!
*#+,$,-)!

"'()!
/)0%$,-)!

.%&+)!
/)0%$,-)!

"',%&+! 18896 7925 0 10971 0

123+! 3992 1934 0 2058 0

.,&)!"45)+!6%&7%')!
89$)':)5$);!

<=<! >33!

?@!:#-)'%0)!
>%4AB!
C@"!'%$)D!

9745 8126 1619 28.43%

"#$
%!

#&#
$! #'#

%!
#'#
(!

)!

*))!

#)))!

#*))!

()))!

(*))!

")))!

"*))!

IE
6

r8
,f

8,
j5

IE
7

r8
,f

8,
j5

IE
8

r9
,f

9,
j6

FF
3

r8
,f

8,
j5

'$+#!

#+)*!
%*%! $)#!

)!

*))!

#)))!

#*))!

()))!

(*))!

")))!

"*))!

')))!

'*))!

*)))!

Adobe
Reader

Sun
Java

IE Adobe
Flash

#"$#!##)&!
#"(! #)$! #)(!

($! ()! #%!
#!

#)!

#))!

#)))!

r=Adobe Reader, f=Adobe Flash, j=Sun Java

(a) Encountered Exploit-Kit Distribution!
!
!
!
!
!
!
!

!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!

! "#$%&! "'()!
*#+,$,-)!

.%&+)!
*#+,$,-)!

"'()!
/)0%$,-)!

.%&+)!
/)0%$,-)!

"',%&+! 18896 7925 0 10971 0

123+! 3992 1934 0 2058 0

.,&)!"45)+!6%&7%')!
89$)':)5$);!

<=<! >33!

?@!:#-)'%0)!
>%4AB!
C@"!'%$)D!

9745 8126 1619 28.43%

"#$%!

#&#$!
#'#%!#'#(!

)!

*))!

#)))!

#*))!

()))!

(*))!

")))!

"*))!

IE
6

r8
,f

8,
j5

IE
7

r8
,f

8,
j5

IE
8

r9
,f

9,
j6

FF
3

r8
,f

8,
j5

'$+#!

#+)*!
%*%! $)#!

)!

*))!

#)))!

#*))!

()))!

(*))!

")))!

"*))!

')))!

'*))!

*)))!

Adobe
Reader

Sun
Java

IE Adobe
Flash

##)&!#"$#!
#)$! #)(! #"(!

($! ()! #%!
#!

#)!

#))!

#)))!

r=Adobe Reader, f=Adobe Flash, j=Sun Java

(b) Vulnerability Distribution

!
!
!
!
!
!
!
!

!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!

! "#$%&! "'()!
*#+,$,-)!

.%&+)!
*#+,$,-)!

"'()!
/)0%$,-)!

.%&+)!
/)0%$,-)!

"',%&+! 18896 7925 0 10971 0

123+! 3992 1934 0 2058 0

.,&)!"45)+!6%&7%')!
89$)':)5$);!

<=<! >33!

?@!:#-)'%0)!
>%4AB!
C@"!'%$)D!

9745 8126 1619 28.43%

"#$%!

#&#$!
#'#%!#'#(!

)!

*))!

#)))!

#*))!

()))!

(*))!

")))!

"*))!

IE
6

r8
,f

8,
j5

IE
7

r8
,f

8,
j5

IE
8

r9
,f

9,
j6

FF
3

r8
,f

8,
j5

'$+#!

#+)*!
%*%! $)#!

)!

*))!

#)))!

#*))!

()))!

(*))!

")))!

"*))!

')))!

'*))!

*)))!

Adobe
Reader

Sun
Java

IE Adobe
Flash

##)&!#"$#!
#)$! #)(! #"(!

($! ()! #%!
#!

#)!

#))!

#)))!

r=Adobe Reader, f=Adobe Flash, j=Sun Java

(c) Attack Distribution

Figure 4: Statistics from daily malicious URL experiment

tives. The second part of the evaluation reveals that BLADE im-
poses a negligible overhead on the host machine.

4.1 Measuring System Effectiveness
We describe three experiments collectively designed to measure

the completeness, accuracy, and overhead of BLADE’s protection.

A. Empirical Daily Evaluation on Malware URL Lists: One
way to demonstrate the effectiveness of a security system is to ex-
ercise it against contemporary real-world threats. Our testbed au-
tomatically harvests malware URLs from multiple whitehat mail-
ing lists on a daily basis and evaluates BLADE against potential
drive-by URLs that were reported in the past 48 hours. To validate
BLADE’s browser and exploit independence, each URL is tested
against multiple software configurations covering different browser
versions and common plug-ins.

Our evaluation platform is a VMware virtual machine running on
a lightly loaded PC with a 2.0 GHz single-core CPU and 512 MB
RAM. The VM runs Windows XP SP2 (without any additional se-
curity patches) and is equipped with versions of Internet Explorer,
Firefox, and vulnerable browser plug-ins (e.g., PDF reader, Flash
player, JVM). Each software configuration is saved as a separate
VM snapshot. The testbed drives the VM to iterate through the
URL list for each software configuration. Prior to visiting each
URL, the testbed reverts the VM and prepares the environment
wherein BLADE and independent instrumentation tools are loaded.
These include procmon [3] to monitor Windows system call events
and tcpdump on the host to capture packet traces. The purpose

of instrumentation is to gather auxiliary evidence about potential
drive-by installs for false negative evaluation. An in-VM agent then
creates a browser instance and navigates it to the malicious URL.
After a delay of one minute, BLADE’s output and instrumentation
logs are synchronously redirected outside the VM for offline post-
mortem analysis.

We parse the instrumentation log to identify specific events that
we then interpret in evaluating several potential experimental out-
comes. In particular, we track three key experiment outcomes:

C1 :(T |F) URL test session caused a BLADE alert
C2 :(T |F) URL test session attempted to load/execute a file

from the secure zone
C3 :(T |F) URL test session produced a file write outside the

secure zone

C1 can be confirmed from BLADE’s alert log. System call event
logs, especially events related to filesystem and process manage-
ment, can help identify occurrences of C2 and C3. The testbed
then derives the following evaluation metrics, which are defined as
logic combinations of conditional occurrences.

True Positive := C1 ∧ (C2 ∨ C3)

False Negative := C1 ∧ (C2 ∨ C3)

False Positive := C1 ∧ (C2 ∨ C3)

True Negative := C1 ∧ (C2 ∨ C3)

The testbed has been operational for 3 months and visited 3,992
unique malicious URLs (please see www.blade-defender.
org/eval-lab for updated statistics and results). The dataset
that was collected also offers a glimpse into the Internet’s con-
temporary drive-by malware landscape as summarized in Figure
4. Figure 4 (a) shows the distribution of exploit kits encountered
during our experiments illustrating the growing popularity of com-
mercialized exploit kits. Eleonore and JustExploit seem to be the
most popular. Figure 4 (b) shows the distribution of attacks by vul-
nerable software. We find that (i) pdf exploits currently dominate,
(ii) attackers increasingly prefer targeting plug-ins over browsers
because of the wider attack surface, and (iii) they largely rely on
commercialized exploit kits to launch reliable attacks.

Figure 4 (c) displays the distribution of successful attacks based
on browser and software configuration. Not surprisingly, we find
that all tested browsers are vulnerable. We find that the Internet Ex-
plorer 6.0 system configured with Adobe Reader 8.0, Adobe Flash
8.0, and JVM 5.0 is the most vulnerable. A similarly configured
Firefox 3.0 system experiences less than half the number of exploits
and is comparable to Internet Explorer 8 running Adobe Reader 9.0
and JVM 6.0. Table 1 summarizes results from our daily evalua-
tion. The number of trials is more than the number of unique URLs
because each URL might appear on the list for multiple days and
is tested on multiple VM configurations. As shown in Table 1(a),
BLADE was successful at blocking all 7,925 attempted drive-by
malware installs while generating zero false alarms. Furthermore,
all downloaded malicious binaries were safely quarantined into the
secure zone. While these results might be surprising at first glance,
they are expected because BLADE is designed in an exploit obliv-
ious manner. It is worth noting that at no point did our system
design or implementation necessitate additional tuning to handle a
new exploit or shellcode type. Table 1(b) provides a summary of
the malware binaries captured. The 7,925 trials pushed 9,745 bina-
ries (certain sites push more than one binary) which included 8,126
EXEs and 1,619 DLLs. The average detection rate of these binaries
from virustotal.com was only 28.43%.

Only about half of the malicious URLs were observed to be de-
livering drive-by download attacks when tested. While we do not

(a) Evaluation Metrics

!
!
!
!
!
!
!
!

!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!

! "#$%&! "'()!
*#+,$,-)!

.%&+)!
*#+,$,-)!

"'()!
/)0%$,-)!

.%&+)!
/)0%$,-)!

"',%&+! 18896 7925 0 10971 0

123+! 3992 1934 0 2058 0

.,&)!"45)+!6%&7%')!
89$)':)5$);!

<=<! >33!

?@!:#-)'%0)!
>%4AB!
C@"!'%$)D!

9745 8126 1619 28.43%

"#$%!

#&#$!
#'#%!#'#(!

)!

*))!

#)))!

#*))!

()))!

(*))!

")))!

"*))!

IE
6

r8
,f

8,
j5

IE
7

r8
,f

8,
j5

IE
8

r9
,f

9,
j6

FF
3

r8
,f

8,
j5

'$+#!

#+)*!
%*%! $)#!

)!

*))!

#)))!

#*))!

()))!

(*))!

")))!

"*))!

')))!

'*))!

*)))!

Adobe
Reader

Sun
Java

IE Adobe
Flash

##)&!#"$#!
#)$! #)(! #"(!

($! ()! #%!
#!

#)!

#))!

#)))!

r=Adobe Reader, f=Adobe Flash, j=Sun Java

(b) Dropped File Statistics

!
!
!
!
!
!
!
!

!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!

! "#$%&! "'()!
*#+,$,-)!

.%&+)!
*#+,$,-)!

"'()!
/)0%$,-)!

.%&+)!
/)0%$,-)!

"',%&+! 18896 7925 0 10971 0

123+! 3992 1934 0 2058 0

.,&)!"45)+!6%&7%')!
89$)':)5$);!

<=<! >33!

?@!:#-)'%0)!
>%4AB!
C@"!'%$)D!

9745 8126 1619 28.43%

"#$%!

#&#$!
#'#%!#'#(!

)!

*))!

#)))!

#*))!

()))!

(*))!

")))!

"*))!

IE
6

r8
,f

8,
j5

IE
7

r8
,f

8,
j5

IE
8

r9
,f

9,
j6

FF
3

r8
,f

8,
j5

'$+#!

#+)*!
%*%! $)#!

)!

*))!

#)))!

#*))!

()))!

(*))!

")))!

"*))!

')))!

'*))!

*)))!

Adobe
Reader

Sun
Java

IE Adobe
Flash

##)&!#"$#!
#)$! #)(! #"(!

($! ()! #%!
#!

#)!

#))!

#)))!

r=Adobe Reader, f=Adobe Flash, j=Sun Java

Table 1: Results from daily malicious URL experiment

know the exact reason why attacks fail in each instance, they in-
clude the following: (a) malicious sites that have been cleaned up,
(b) misclassified sites (e.g., phishing sites) that do not attempt sur-
reptitious drive-by downloads, (c) sites that employ IP tracking to
blacklist repeated visitors, and (d) sites that target vulnerabilities
not present in our configuration.

B. In Situ Attack Coverage Evaluation: The first experiment
demonstrates BLADE’s effectiveness against thousands of drive-
by download attacks in the wild. However, it is possible that at-
tacks in the wild are dominated by a few exploit kits and exer-
cise only a limited set of common exploits. To compensate for
this potential limitation, we conducted a second experiment that
specifically evaluates BLADE against a wider set of hand-crafted
attacks and more browser versions. Specifically, this customized
attack set is composed of diverse shellcodes and exploits targeting
several vulnerabilities in browser/plug-in software including 11 re-
cently disclosed zero-day exploits listed in Table 2. In each case,
BLADE successfully prevented the execution of the drive-by ex-
ploit binary, reaffirming our design premise that BLADE delivers
complete and accurate protection in a browser-agnostic and exploit-
oblivious manner.
C. Benign Website Evaluation: We evaluate BLADE’s effective-
ness on benign web sites, i.e., the false positive rate. For BLADE, a
false positive implies that the execution of a legitimate (authorized)
executable download is blocked by BLADE. Under BLADE’s de-
sign, there are two potential reasons why an authorized executable
download may be inadvertently hindered by BLADE: (i) the user’s
authorization cannot be inferred, which leaves the resulting down-
load in the secure zone as untrusted; (ii) a legitimate browser down-
load seeks to execute benign logic without the user’s consent, which
represents a violation of our root assumption. Thus, we tried to cre-
ate a workload that might trigger (i) or (ii).

To address (i), we first tested the signature coverage of down-
load consent dialogs for each browser by looking for an unknown
method for requesting download consent. We downloaded 30 dif-
ferent software applications from 15 highly ranked freeware sites,
with varying file types (.exe, .zip, .msi etc.). We also checked
whether download consent UIs can be reliably discovered when
noise is introduced onto the screen. Neither of the above two test
cases revealed any false positives. We used a stress-testing-based
strategy to create a workload that could lead to false positives in-
curred from (ii). By manually visiting a URL pool, including the
top 5 highly ranked websites from 16 categories [1], we verified
that BLADE does not disrupt normal browser interactions with
these benign sites.

4.2 Performance Overhead
BLADE’s deployment target is the average Internet Windows

PC, where it is expected to protect such systems from drive-by

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!"#
$%&'()*#
+,$-!"#

./(012/# $%&'()*#345'(46#
"2*27*26#
.5#.'462#

,8'9:#;(*21#

!" #$$%&'%((")*+,-./"!01" 2,3.4,567,8859*:;" <$=# <*:;.<0:=>*?=4.+"

#" #$$1&!@(%")*+,-./"!01" A.<:8.=;5,/,B" <$=# C:64=88D+*??,+0*:64=88EF"

A.<:8.=;5,/,B" <$=#'" #$$(&$$'G")*+,-./"#0$"
A885*:H,B4*.:" <$=#

I.=;J:*CB.:EF"

A.<:8.=;5,/,B" <$=#@" #$$K&#@(("
"

)*+,-./"'01"
A885*:H,B4*.:" <$=#

>/472?(9@25##
A-645"

1" LMJ"
"

)*+,-./"'01" A.<:8.=;5,/,B"
<$="

B)9C1D"##
A-645"

2,3.4,567,8859*:;" <$=#%"
"

#$$K&$K#(")*+,-./"'01"
A885*:H,B4*.:" <$=#

N.88=90?,4CB.:EF"

(" #$!$&!$#G")*+,-./"'01" A.<:8.=;5,/,B"
<$=#

E(9*#FG2/H'(0#
A-645"

G" #$!$&!$G#")*+,-./"'01" A.<:8.=;5,/,B"
<$=#

I?J#FG2/H'(0#
A-645#

A.<:8.=;5,/,B" <$=#K" #$$(&$$'G" CO"%0$0#K$$"
A885*:H,B4*.:" <$=#

I.=;J:*CB.:EF"

!$" #$$%&@(((" CO"%0$0#K$$" A.<:8.=;5,/,B" <$=# P,Q)+=3,EF"
!!" #$$%&'('$" CO"%0$0#K$$" A885*:H,B4*.:" <$=# 6,4R8*B,EF"
!#" #$$K&$$(1" CO"(0$01('$" 2,3.4,567,8859*:;" <$=# N)S:B4*.:T.*:4,+"
!'" #$$K&!1'K"

!
CO"%0$0#K$$" A.<:8.=;5,/,B"

" <$=#
")/27*=K(0L!
M84/*N#A-645#

2,3.4,567,8859*:;" <$="!@" #$$K&'%(#"
"

CO"(0$01('$"
A.<:8.=;5,/,B" <$=#

!$#=*5'2-(OP27*##
A-645"

!1" #$$G&$$!1"
"

CO"(0$01('$" A.<:8.=;5,/,B"
<$="

")/27*=K(0LQ>J#
A-645"

!%! #$!$&$#@K"
"

CO"%0$0#K$$" A.<:8.=;5,/,B"
<$="

!$#Q8/(/4##
A-645"

!(" #$!$&$GG%" CO"(0$01('$" A.<:8.=;5,/,B"
<$=#

R"SLRT$#U#
A-645#

!G" #$!$&G%" CO"(0$01('$" A.<:8.=;5,/,B" <$=# !$&22/1#A-645#
A.<:8.=;5,/,B" <$="
AII5*:H,B4" <$="

!K" #$$K&@'#@" CO"G0$0(%$$"

2,3.4,567,8859*:;" <$="

3"EL!
920&'452/VW#

#A-645"

Table 2: Test results on targeted attacks and 0-days

attacks while imposing negligible delays on the web surfer. Per-
formance issues have been considered at almost every stage during
the design and implementation of BLADE. Here, we discuss the is-
sue of BLADE’s performance impact by first measuring the delay
certain components caused to related operations on the host com-
puter. We then evaluate the overall performance overhead incurred
by BLADE as a whole.

Micro performance evaluation: These per-component tests are
designed not only to individually measure performance overhead of
each component, but also to mitigate factors that might affect mea-
surements such as variable network delay. Among BLADE com-
ponents, the Screen Parser, the I/O Redirector, and the Correlator
are the only three that introduce measurable delays. We evaluate
the contributions of each of them below.

Although the Screen Parser is designed to be asynchronous there
is a chance of delay while it is matching download consent UI sig-
natures with each appearance of a new UI element. In our tests even
the worst-case matching time was not measurable, i.e., less than a
millisecond.

To accurately examine the worst-case delay introduced by the
I/O Redirector into file system accesses, we conducted a test as
follows. We chose three files of varying sizes (1 MB, 10 MB and
100 MB) and copied them from one location to another within the
same disk. Each file was copied twice, once with and once without
the I/O Redirector turned on. To completely avoid other effects
(e.g., file system cache, in-memory cache), we reverted to a clean
VM snapshot before beginning each test. The delay and copy times
for each file are shown in Table 3 which varies from 1 ms (for 1 MB
files) to 7 ms (for 100 MB files). The delays are minimal because
the redirector intervenes only in the process of requesting new file
handles and does not intercept the disk write operations.

We also conducted performance testing on the Correlator, which

!
!"#$%&"' ()*&'+%&,-'

$.#'!/012''
()*&'+%&,-'
$.'!/012'

1&345'

!"#$%&'()*+! "#$"%! "#$&"! 6789:'
,-(.*/('#"()! '#'*%! 97;8:'
,-(0*/('#*()! '#+""! 979<:'

=)3&'>)?&'
+@!-'

A#B5'()*&'
+%&,-'$.#'
C&D)"&,E)#F'

A#B5'()*&'
+%&,-'$.'
C&D)"&,E)#F'

1&345'

/*10((((*#*('! *#*($! G766:'
1*2)((((*#('"! *#('&! 97H9:'
13*44((#&"%! (#&")! 67HI:'

=)3&'>)?&'
+@!-'

()*&'+%&,-'
$.#'!/012'

()*&'+%&,-'
$.'!/012'

1&345'

/*10(((((#%"'! (#(*%! J79G:'
1*2)((((""#(*%! ""#)+,! H76G:'
13*44("%"#''"! "%&#**"! 67<9:'

("4,&'>)?&'
+@!-'

=)3&'>)?&'
+@!-'

()*&''
+>&,-'

5*52(*#,)!!!! 676H;'
1*3+(,#("!!!! 67HH9'
1+*0)(,'#&&! H7G66'

Table 3: Micro evaluation results: I/O Redirector delay (left)
and file comparison overhead (right)

puts each correlation candidate on hold until a conclusion is reached.
Specifically, we test the running time of the content-based compar-
ison process, which is exactly the period a legitimate user down-
load must wait to be correlated. We performed the test on three
downloaded files of different size. Running times for file sizes,
calculated using timestamps that were output by the Correlator are
summarized in Table 3. For downloads less than 10 MBs in size,
the correlation process could finish within 1 second. We believe
that such delays will not be perceptible to end users. In the case
of huge files (larger than 100 MBs), the observed delays are on the
order of several seconds. Given that the download itself is on the
order of several minutes, we believe that the few seconds delay will
go unnoticed in most (if not all) situations.

Macro performance evaluation: We created two different test
cases to measure the average overhead imposed by BLADE on
web-surfing workloads.

• Browser rendering delays: We used a JavaScript tool for test-
ing rendering time of browsers with the objective of demonstrating
that BLADE imposes negligible performance overhead to super-
vised browsers. To avoid the impact of variable network delays,
we downloaded the JavaScript testing tool to the local disk before
opening it with the browser. Once the page is fully loaded, a ren-
dering time is calculated and displayed by the tool. We repeated
the test 10 times for each browser, by reverting to a fresh snapshot
after each test and recorded the average rendering time shown in
Table 4. Overall, only slight increases in browser rendering times
were observed, as only the Screen Parser and I/O Redirector are
active when there are no pending download authorizations.

• Authorized download delays: To evaluate the worst-case perfor-
mance overhead, we designed a second test case, where delays on
authorized file downloads were measured. We define the file down-
load delay as the period starting from when the user responds to
the confirmation dialog box, to the point that the file is completely
written to the disk. All the downloaded files were hosted in an-
other computer on the same local area network, and delays shown
in Table 4 hovered over 3% for small files and under 3% for large
files.

5. SECURITY ANALYSIS
In this section, we analyze the soundness of the BLADE sys-

tem design by discussing various attacks that knowledgeable adver-
saries may pursue to circumvent BLADE. For each attack strategy,
we identify the countermeasures that have been incorporated into
the BLADE design to address these threats. We then enumerate
several limitations in BLADE’s threat coverage.

5.1 Attacks and Built-in Countermeasures
Assuming that BLADE gains a high degree of user acceptance,

we expect that malware publishers will acquire BLADE and plot
circumvention strategies that either involve dropping the malware
outside the secure zone or executing it while it is being quaran-
tined. To this end, we see three avenues that future adversaries
may explore to evade BLADE and surreptitiously install the mal-

ware. Countermeasures for these attacks have already been inte-
grated into BLADE.

Spoofing attacks – The attacker may attempt to drop malware di-
rectly onto the local file system, without being redirected to the
secure zone. To accomplish this, the attacker must (a) fool BLADE
by forging a fake download consent dialog and the user response,
or (b) fool user and the BLADE Screen Parser by spoofing browser
GUI to display rogue download confirmations [10]. Countermea-
sures: We address (a) by ensuring that the user authorization in-
ference is based on real hardware events that cannot be spoofed
at the application layer. The BLADE Correlator (see § 3.4) elim-
inates the possibility of (b) by taking additional steps to validate
the origins of user consented downloads. Although the attacker can
launch a denial-of-service attack by disabling the user-level Screen
Parser, this action will not lead to the surreptitious infection of the
browser’s host.

Download injection and process hijacking attacks – The attacker
may attempt to move a downloaded malware instance out of the se-
cure zone and then execute it. Having control of the browser pro-
cess, the attacker could replace an authorized download with mal-
ware. The attacker may also hijack an unsupervised process whose
file I/O is not redirected, e.g., by creating a remote thread within
an unsupervised process. Countermeasures: Content-based cor-
relation guarantees the source of authorized downloads and pre-
vents download injection attacks. The BLADE Supervisor follows
process creations (i.e., child processes of the browser) and remote
thread activations (sibling) to ensure that unauthorized file writes
from the supervised processes are appropriately redirected to the
secure zone.

Coercing attacks – The attacker may attempt to coerce the oper-
ating system to execute the malware directly from the secure zone.
Countermeasure: Since I/O redirection is implemented and en-
forced by a kernel driver, we believe that such attacks should be
infeasible by design. If one asserts that the malware publisher may
have control logic buried within the kernel to halt BLADE’s oper-
ation, then we argue that the drive-by download attack is entirely
unnecessary.

5.2 Limitations
While we believe BLADE represents an effective service for

stopping surreptitious drive-by installations of malware, we recog-
nize that it does not provide complete coverage of all threats web
users are facing. First, BLADE does not prevent social engineer-
ing attacks where the user authorizes the download and installa-
tion of malicious binaries disguised as benign applications. Sec-
ond, BLADE does not prevent in-memory execution of transient
malware, which could be scripts such as JavaScript bots or x86
code inserted into memory by exploits. While such attacks are out
of scope for our system, the latter attacks could be prevented by
orthogonal protection techniques, such as DEP. Third, BLADE is
dependent on explicit download-consent UI, which is optional (can
be disabled by the user) in certain browsers. Users wishing to use
BLADE to protect their web surfing activities must enable down-
load confirmations on their browsers. Finally, BLADE is effective
only against binary executables and does not prevent the download
and installation of interpreted scripts. However, the overwhelming
majority of current drive-by download malware is delivered as bi-
naries. At a minimum, our system raises the bar by rendering the
prevalent drive-by download threat obsolete. We intend to explore
ways to stop the installation of malicious scripts in the future.

!
!"#$%&"' ()*&'+%&,-'

$.#'!/012''
()*&'+%&,-'
$.'!/012'

1&345'

Firefox 3.5! "#$"%! "#$&"! 6789:'
IE 7.0 '#"()! '#'*%! 97;8:'
IE 8.0 '#*()! '#+""! 979<:'

=)3&'>)?&'
+@!-'

()*&'+%&,-'
$.#'!/012'

()*&'+%&,-'
$.'!/012'

1&345'

0.98 (#%"'! (#(*%! A79B:'
9.23 ""#(*%! ""#)+,! C76B:'
94.66 "%"#''"! "%&#**"! 67<9:'

("4,&'>)?&'
+@!-'

=)3&'>)?&'
+@!-'

()*&''
+>&,-'

1.12 *#,)!!!! 676C;'
9.45 ,#("!!!! 67CC9'
95.83 ,'#&&! C7B66'

=)3&'>)?&'
+@!-'

D#E5'()*&'+%&,-'
$.'F&G)"&,H)#I'

D#E5'()*&'+%&,-'
$.#'F&G)"&,H)#I'

1&345'

0.98 *#*('! *#*($! B766:'
9.23 *#('"! *#('&! 97C9:'
94.66 (#&"%! (#&")! 67CJ:'

Table 4: Macro-evaluation results: Browser rendering (left) and authorized download (right) times

6. RELATED WORK
We discuss prior measurement studies that inform the design of

BLADE and distinguish it from existing URL analysis services,
malware defense systems, and browser-based protections.

Internet measurement studies: The problem of drive-by down-
loads, particularly those resulting in malware installations on un-
suspecting victims, has attracted considerable attention from re-
searchers. In 2005, Moshchuk et al. [22] studied the threats, distri-
bution, and evolution of spyware through an examination of more
than 18 million URLs, finding scripted drive-by downloads in 5.9%
of the pages visited. Seifert et al. [31] examined the prevalence
and distribution of malicious web servers using the Capture-HPC
client honeypot, identifying more than 300 malicious sites. In [27],
Provos et al. provided a detailed dissection of the sophisticated
methodology employed by the blackhats and the steps involved
in executing a typical drive-by download exploit of a system. In
a subsequent study [26], the authors provided extensive quantita-
tive measurements of the global prevalence and distribution of the
parties (landing sites, redirection sites and script hosting sites) in-
volved in drive-by downloads by examining billions of URLs in the
Google web archive. These studies underscore the significance of
the drive-by download malware problem and motivate development
of the BLADE system.

Website survey systems and proxy services: Blacklist services
such as stopbadware.org [5] provide alerts on malicious soft-
ware systems and websites, currently listing more than 392,000 ma-
licious sites. Strider HoneyMonkey [34] and phoneyc [23] crawl
the Internet looking for websites that host malicious code. While
the former approach uses Virtual Machines running different op-
erating systems and patch levels, the latter is a lightweight low-
interaction system that emulates browser execution of JavaScript.

SpyBye [25] operates as a proxy server and uses simple rules to
classify a URL into three categories: harmless, unknown, or dan-
gerous. The classification process can be error prone and is meant
to be a tool for webmasters to track the security for sites that they
administer. The SecureBrowing software plug-in developed by Fin-
jan [4] scans web pages in real time for viruses and malware. While
the details of their detection methodology are proprietary, it is pre-
sumed to be a combination of attack signatures and URL black-
lists. The BrowserShield [30] proxy system uses script rewriting
and vulnerability-driven filtering to transform inbound web pages
into safe equivalents by disabling execution of malicious JavaScript
and VBScript exploits at runtime. Wepawet is an online submission
service for detecting and analyzing malicious URLs with the capa-
bility of analyzing exploits in Flash, JavaScript, and PDF files [13].
Unlike these approaches, BLADE does not require attack signa-
tures and is effective against zero-day attacks.

SpyProxy [21] is an execution-based malware detection proxy
system, that executes active web content in a virtual machine en-
vironment before it reaches the browser. A limitation is that pro-
tection is guaranteed only when the host machine and the proxy
machine maintain the identical software configuration.

Network- and host-based malware defense systems: Systems
such as BotHunter [14] and BotSniffer [15] are meant to detect
infected enterprise systems based on post-infection network dia-
log, but do not prevent the execution of malware. AntiVirus sys-

tems [6] and services like CloudAV [24], which attempt to block
the execution of malware, are limited by the reliance on binary sig-
natures. For drive-by attacks, BLADE addresses the limitations of
these approaches, i.e., it acts like an IPS that thwarts the execution
of malware and does not rely on signatures.

Egele et al. [12] proposed the use of x86 emulation techniques
to defend browsers against a specific type of drive-by download
attack, i.e., heap-spraying code injection attacks. Their objective
is similar to that of NOZZLE [29], which uses static analysis of
objects in the heap to detect heap-spraying attacks. BLADE dif-
fers from these systems in that it does not detect the attack, but
rather prevents the execution of the malware. Our approach has the
benefit that it defends against all forms of web-based surreptitious-
download exploits, including malware installed using heap-spraying
code injection attacks.

Sandboxing/Isolation systems: Solitude [17] and Alcatraz [19]
are two systems that limit the effects of attacks by providing sup-
port for application-level isolation recovery. Secure browsers [9,
33] have been developed that use sandbox techniques to prevent
malware installations. The Chromium sandbox [9] attempts to miti-
gate browser exploits by separating the trusted browser kernel (which
runs with high-privilege outside the sandbox) and untrusted ren-
dering engine. However, the presence of published client-side ex-
ploits for Chrome validates that such strategies are not a panacea.
Recently, Barth et al. proposed a browser extension system that
uses privilege separation and isolation to limit the impact of un-
trusted extensions [7]. The Polaris system uses the principle of
least authority to restrict the impact of running untrusted applica-
tions [32]. BLADE’s unconsented-content execution prevention is
a similar concept to sandboxing. However, BLADE fully prevents
the binary execution from occurring, rather than imposing privi-
lege limitations, and it is significantly more transparent in how it
uses user-dialog confirmation to auto-remap user-initiated down-
loads. More significantly, unlike secure browser frameworks that
require the adoption of an entirely new browser, BLADE security
protections can be deployed underneath the wide range of current
and legacy Internet browsers.

7. CONCLUSION AND FUTURE WORK
We introduced the BLADE system as a new approach to im-

munizing vulnerable Windows hosts from surreptitious drive-by
download infections. The BLADE system incorporates a kernel
module to track all browser-to-human interactions, and then uses
this information to distinguish consented web-based binary down-
loads from those cases where covert binary installations are per-
formed. In the former case, the user-consented binaries are trans-
parently remapped to the filesystem, and BLADE imposes no per-
ceptible runtime behavioral changes or performance impacts on the
browser. In the latter case, BLADE isolates and reports the mali-
cious link and binary to the user, and unlike traditional sandboxes
these malicious binaries are never executed.

We presented results from an ongoing evaluation of BLADE
against thousands of active drive-by exploits currently plaguing the
Internet (our evaluation results are unfiltered, auto-generated, and
posted publicly to www.blade-defender.org). To date, BLADE’s in-
terception logic has demonstrated 100% effectiveness in preventing
covert binary installations using the most widely deployed browsers

on the Internet. Furthermore, over the past six months we have
tested BLADE against the newest 0-day drive-by exploit attacks
within days of their release and none have circumvented BLADE.
In our next phase, we plan to extend BLADE support to other
network-capable applications subject to drive-by download attacks.

8. ACKNOWLEDGEMENT
The authors would like to thank Ashish Gehani and the anony-

mous reviewers for helpful comments on earlier versions of the pa-
per. This material is based upon work supported in part by the Na-
tional Science Foundation under grant no. 0831300, the Army Re-
search Office under Cyber-TA Grant no. W911NF-06-1-0316, the
Department of Homeland Security under contract no. FA8750-08-
2-0141, the Office of Naval Research under grants no. N000140710907
and no. N000140911042. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the authors and do not necessarily refect the views of the National
Science Foundation, the Army Research Office, the Department of
Homeland Security, or the Offce of Naval Research.

9. REFERENCES
[1] Alexa - Top Sites By Category.

http://www.alexa.com/topsites/category.
[2] Microsoft Security Bulletin MS10-002 - Critical.

http://www.microsoft.com/technet/security/bulletin/MS10-
002.mspx.

[3] Process Monitor. http://technet.microsoft.com/en-
us/sysinternals/bb896645.aspx.

[4] finjan: securing your web. http://www.finjan.com, 2009.
[5] stopbadware.org. http://www.stopbadware.org, 2009.
[6] Symantec inc. http://www.symantec.com, 2009.
[7] B. Adam, P. F. Adrienne, S. Prateek, and B. Aaron.

Protecting browsers from extension vulnerabilities. In
Network and Distributed System Security Symposium
(NDSS), 2010.

[8] P. Barford and V. Yegneswaran. An inside look at botnets.
Special Workshop on Malware Detection, Advances in
Information Security, Springer Verlag, 2006.

[9] A. Barth, C. Jackson, C. Reis, and T. G. C. Team. The
Security Architecture of the Chromium Browser. In Stanford
Technical Report, 2008.

[10] S. Chen, J. Meseguer, R. Sasse, H. J. Wang, and Y.-M. Wang.
A systematic approach to uncover security flaws in gui logic.
In Proceedings of the IEEE Symposium on Security and
Privacy, 2007.

[11] S. Dietrich, N. Long, and D. Dittrich. Analyzing distributed
denial of service tools: The Shaft Case. In Proceedings of the
USENIX System Adminstrator’s Conference, LISA, 2000.

[12] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending
browsers against drive-by downloads: Mitigating
heap-spraying code injection attacks. In Proceedings of
Detection of Intrusions and Malware and Vulnerabilility
Assessment (DIMVA), 2009.

[13] S. Ford, M. Cova, C. Kruegel, and G. Vigna. Wepawet.
http://wepawet.cs.ucsb.edu, 2009.

[14] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee.
BotHunter: Detecting malware infection through IDS-driven
dialog correlation. In Proceedings of 16th USENIX Security
Symposium, 2007.

[15] G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting botnet
command and control channels in network traffic. In
Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS), 2008.

[16] K. J. Higgins. ’Aurora’ exploit retooled to bypass Internet
Explorer’s DEP security.
http://www.darkreading.com/security/-
vulnerabilities/showArticle.jhtml?articleID=222301436.

[17] S. Jain, F. Shafique, V. Djeric, and A. Goel. Application-level
isolation and recovery with solitude. In Proceedings of ACM
EuroSys, 2008.

[18] B. Krebs. Clamping down the Clampi trojan.
http://voices.washingtonpost.com/securityfix/2009/09/-
clamping_down_on_clampi.html.

[19] Z. Liang, V. N. Venkatakrishnan, and R. Sekar. Isolated
program execution: An application transparent approach for
executing untrusted programs.

[20] A. Martinez-Cabrera. Malware infections double on web
pages. http://articles.sfgate.com/2010-01-26/business/-
17836038_1_malware-infected-sites.

[21] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble, and
H. M. Levy. SpyProxy: Execution-based detection of
malicious web content. In Proceedings of 16th USENIX
Security Symposium, 2007.

[22] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A
crawler-based study of spyware on the web. In Network and
Distributed System Security Symposium, February 2006.

[23] J. Nazario. phoneyc: A Virtual Client Honeyport. In
Proceedings of LEET, 2009.

[24] J. Oberheide, E. Cooke, and F. Jahanian. Cloudav: N-version
antivirus in the network cloud. In Proceedings of 17th
USENIX Security Symposium, 2008.

[25] N. Provos. Spybye - finding malware.
http://www.monkey.org/p̃rovos/spybye/, 2009.

[26] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose.
All your iframes point to us. In Proceedings of the 17th
USENIX Security Symposium, 2008.

[27] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and
N. Modadugu. The ghost in the browser analysis of
web-based malware. In 1st Workshop on Hot Topics in
Understanding Botnets, 2007.

[28] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A
multi-faceted approach to understanding the botnet
phenomenon. In Proceedings of ACM SIGCOMM/USENIX
Internet Measurement Conference, October 2006.

[29] P. Ratanaworabhan, B. Livshits, and B. Zorn. NOZZLE: A
defense against heap-spraying code injection attacks. In
Proceedings of 18th USENIX Security Symposium, 2009.

[30] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir.
Browsershield: Vulnerability driven filtering of dynamic
html. In Proceedings of OSDI, 2006.

[31] C. Seifert, R. Steenson, T. Holtz, B. Yuan, and M. A. Davis.
Know your enemy: Malicious web servers.
http://www.honeynet.org/papers/mws/, 2007.

[32] M. Stiegler, A. Karp, K. Yee, T. Close, and M. Miller.
Polaris: virus-safe computing for Windows XP.
Communications of the ACM, 49(9):88, 2006.

[33] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The multi-principal
construction of the Gazelle web browser. In Proceedings of
the 18th Usenix Security Symposium, 2009.

[34] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,
S. Chen, and S. King. Automated web patrol with strider
honeymonkeys: Finding web sites that exploit browser
vulnerabilities. In Network and Distributed System Security
Symposium (NDSS), 2006.

