
MEUZZ: Smart Seed Scheduling for Hybrid Fuzzing

Yaohui Chen

Northeastern University

yaohway@gmail.com

Mansour Ahmadi

Northeastern University

Mansosec@gmail.com

Reza Mirzazade farkhani

Northeastern University

reza699@ccs.neu.edu

Boyu Wang

Stony Brook University

boywang@cs.stonybrook.edu

Long Lu

Northeastern University

l.lu@northeastern.edu

Abstract

Seed scheduling highly impacts the yields of hybrid fuzzing.

Existing hybrid fuzzers schedule seeds based on fixed heuris-

tics that aim to predict input utilities. However, such heuristics

are not generalizable as there exists no one-size-fits-all rule

applicable to different programs. They may work well on the

programs from which they were derived, but not others.

To overcome this problem, we design a Machine learning-

Enhanced hybrid fUZZing system (MEUZZ), which employs

supervised machine learning for adaptive and generalizable

seed scheduling. MEUZZ determines which new seeds are

expected to produce better fuzzing yields based on the

knowledge learned from past seed scheduling decisions

made on the same or similar programs. MEUZZ extracts

a series of features for learning via code reachability and

dynamic analysis, which incurs negligible runtime overhead

(in microseconds). MEUZZ automatically infers the data labels

by evaluating the fuzzing performance of each selected seed.

As a result, MEUZZ is generally applicable to, and performs

well on, various kinds of programs.

Our evaluation shows MEUZZ significantly outperforms the

state-of-the-art grey-box and hybrid fuzzers, achieving 27.1%

more code coverage than QSYM. The learned models are

reusable and transferable, which boosts fuzzing performance

by 7.1% on average and improves 68% of the 56 cross-program

fuzzing campaigns. When fuzzing 8 well-tested programs un-

der the same configurations as used in previous work, MEUZZ

discovered 47 deeply hidden and previously unknown bugs,

among which 21 were confirmed and fixed by the developers.

1 Introduction

Hybrid testing as a research topic has attracted tremendous

attention and made significant contributions to bug discovery.

For instance, the winning teams in the DARPA Cyber Grand

Challenge [6] all used hybrid testing [17]. Compared with

plain fuzzing, hybrid testing features an extra concolic

execution component, which revisits the fuzzed paths, solves

the path conditions, and tries to uncover new paths.

One key challenge in hybrid testing is to recognize

high-utility seeds (i.e., seeds of high potential to guide

concolic execution to crack complex conditions guarding

more coverage and bugs). Prioritizing such seeds allows

the hybrid fuzzer to achieve higher code coverage more

quickly, and in turn, discover more bugs in a fixed time frame.

Moreover, this prioritization matters in practice because the

concolic execution engine usually has limited time budget and

can explore only a (small) subset of all fuzzer-generated seeds.

Being able to estimate seed utility allows hybrid fuzzers to

use concolic execution more efficiently.

The existing work [8, 19, 25, 33, 49, 54, 55] uses purely

heuristic-based seed selection. For example, some prefer seeds

with smaller sizes while some value those that lead to new

code coverage. These heuristics, despite their simplicity, do

not perform equally well across different kinds of programs

and are not universally suitable for all programs. Contradicting

the previous belief [8, 13, 33], our experiments show that

seeds leading to new coverage sometimes have the lowest

utility (§6.3). Similarly, previous work [33, 54] suggested that

smaller seeds should have higher utility, which however is not

true in certain programs as our evaluation shows. As a result,

these simple and fixed heuristics may cause non-optimum seed

selections, overwhelming the concolic engine with low-utility

seeds and slowing down bug discovery.

Compared to heuristics,Machine Learning (ML) algorithms,

when trained with sufficient data, can discover complex and im-

plicit patterns automatically [43]. We show that seed selection

strategies that are automatically learned based on individual

programs perform better than manually defined heuristics that

fail to consider all kinds of programs. As our experiment shows

that the influence of each feature varies across different pro-

grams, suggesting that no single feature (or rule) can work well

for all programs. ML-based seed selection avoids the need for

manually designing, testing,and reasoning about seed selection

rules, which can be daunting, non-scalable, or even impossible

when the volume of data to be analyzed is overwhelming.

In this paper, we introduce MEUZZ, an ML-enhanced

hybrid fuzzing system. Unlike existing work, which schedule

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 77

seeds using simple heuristics derived from a particular set of

test programs, MEUZZ uses ML and a set of static and dynamic

features, computed from seeds and individual programs, to

predict seed utility and perform seed scheduling. MEUZZ

also has a built-in evaluation module that measures prediction

quality for continuous learning and improvement. To the best

of our knowledge, MEUZZ is the first work [42] that applies

ML to seed prioritization and scheduling.

To effectively apply ML to seed scheduling for hybrid

fuzzing, our design of MEUZZ pays special attention to two

ML tasks: feature engineering and data labeling. While

these are the essential steps to bootstrap ML, they could

be time-consuming and thus too costly or impractical to

be included in the fuzzing workflow. For instance, feature

extraction can be very slow if it requires heavy computation or

extensive data collection. Moreover, it is not straightforward

to quantify seed utility, which is essential for labeling.

To tackle the aforementioned challenges, we first engineer

a set of lightweight features based on code reachability and

dynamic analysis. Second, we propose a labeling method

using the input descendant tree to quantify the utility of a

seed. Our evaluation shows that MEUZZ takes only 5µs on

average to extract an individual feature. It also confirms that

the descendant tree of a seed accurately reflects seed utility.

Collecting data and training a new model for every

program might not be economical or necessary. Therefore,

we investigate the feasibility of model reusability and

transferability to answer the question: Is a learned model

transferable to different fuzzing configurations or programs?

Since the learning is designed to predict the likelihood of

seeds triggering bugs, rather than any specifics of the fuzzed

program, a model learned by MEUZZ turns out to be applicable

beyond the program from which the model is learned.

We compare MEUZZ with the state-of-the-art

fuzzers [19, 24, 33] as well as the most recent hybrid

testing systems [25, 54]. The results, based on a set of

real-world benchmark programs, show that MEUZZ achieves

much higher code coverage than the tested fuzzers that use

simple seed selection heuristics. Particularly MEUZZ expands

the code coverage by as much as 27.1% compared to QSYM,

the start-of-the-art hybrid fuzzing system. The experiments

also show that the prediction models learned by MEUZZ have

good reusability and transferability. The reused models boost

the coverage by 7.1% on average. The transplanted models

improve fuzzing performance in 38 out of 56 cases (67.9%

of cases), with 10 cases seeing more than 10% improvement.

This paper makes the following contributions.

• Effective and generalizable approach. We design, imple-

ment, and evaluate MEUZZ, the first system that applies

machine learning to the seed selection stage of hybrid

fuzzing. MEUZZ performs better and is more widely ap-

plicable than heuristic-based seed selection.

• Practical feature and label engineering. We address two

major challenges, namely feature engineering and label

inference, when applying ML to seed selection in hybrid

fuzzing. Our feature selection and extraction allow for

online/continuous learning. They are compatible with the

existing hybrid fuzzing workflow and require no changes

to either fuzzers or concolic execution engines. We also

propose an automatic label inference method based on

seed descendant trees.

• Reusable and transferable ML models. Our seed selection

models demonstrate strong reusability and transferability.

As a result, MEUZZ can reuse a well-trained model on

different programs (or different fuzzing configurations) to

quickly bootstrap the fuzzing campaign and continuously

improve and adapt the model to the current program or

configuration.

• Open-Source. The full implmentation of MEUZZ will be

open-sourced after acceptance.

2 Motivation

The seed selection (or scheduling) in fuzzing aims to solve

this problem: given a program and a set of seeds, in which

order the fuzzer should test the seeds to maximize the gain

during a fixed period. Seed selection plays a critical role in

hybrid fuzzing because the concolic execution engine can

only explore an (often small) subset of the seeds due to time

constraints. Hence, hybrid fuzzing cannot fully benefit from

concolic execution if the seed selection is not optimal.

Why seed selection is important for hybrid fuzzing:

Hybrid fuzzers without a seed scheduling mechanism (e.g.,

Driller [49]) have to explore all inputs. This “brute force”

strategy has two main drawbacks. First, concolic engines

cannot keep up with the speed of plain fuzzing because they

run relatively slowly and often encounter path explosions and

timeouts. As an experiment, we used QSYM [54] to fuzz a

set of real-world benchmark programs. QSYM is one of the

state-of-the-art concolic execution engines for hybrid testing1.

As shown in Figure 1, for a continuous 24-hour run, QSYM

was only able to explore 23.1% of the seeds in fuzzer’s queue.

Second, a seed selection strategy affects fuzzing results

drastically. A naive strategy delays a fuzzer’s exploration of

interesting program locations, and sometimes, prematurely

forces the fuzzer to skip deep program paths and states.

Some recent research [19, 25, 51, 54, 55] studied a few seed

selection heuristics of various levels of sophistication. In their

experiments, fuzzers using these seed selection heuristics

produce better results (e.g., higher code coverage) than fuzzers

with naive or no strategies.

Why exploring machine learning for seed selection: All

the existing seed selection strategies are based on manually

defined heuristics. Although performing well on their selected

benchmarks, these strategies may not be generalizable to,

or suitable for, other programs. For instance, DigFuzz [55]

and AFLFast [19] prioritize seeds with less explored paths

1Reportedly, QSYM is 3x faster than Driller [54].

78 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

tcpdump libxml2 libjpeg objdump
0

2,000

4,000

6,000

8,000

807

1556

1654

832

6562

4355

3699

2551

#
S

ee
d
s

Unexplored

Explored

Figure 1: The total number of inputs explored by the concolic

execution engine of QSYM in 24 hours. On average, only 23.1% of

the inputs were explored by the concolic execution even though the

engine was continuously running.

by fuzzer. Savior [25] prefers seeds dominating more UBSan-

labeled code paths. QSYM [13] prioritizes seeds with smaller

sizes. These heuristics are all based on intuition or empirical

observations gained from limited test cases or benchmarks.

A biased or unsuitable seed selection strategy delays

or prevents fuzzers’ exploration of deep program states

or the discovery of bugs. For instance, QSYM [13] and

ProFuzzer [53] prioritize inputs with smaller sizes. Their de-

velopers observed in their evaluation benchmarks that smaller

inputs lead to higher code coverage. However, as [25] pointed

out, QSYM fails to explore a large chunk of code in program

who (a program in the LAVA-M benchmark [27]) due to the

unsuitable seed selection strategy (i.e., only inputs larger than

a certain size can trigger the vulnerable functions in this case).

This clearly indicates that fixed seed selection heuristics can

hardly be suitable for a wide set of programs (See Figure 10).

Due to the diverse scheduling scenarios, modern fuzzers

(e.g., AFL [2], QSYM [13]) often employ multiple heuristics

for seed prioritization. Unfortunately, relying on human efforts

to learn and generalize seed selection strategies, as the previous

work did, is not scalable to a large number of features. In fact, it

is just infeasible to manually reason about a big set of selection

criteria when the number of features and the amount of data to

be analyzed become overwhelming (e.g., OSS-Fuzz generates

four trillion seeds per week [4] for different programs).

In contrast to heuristics, machine learning (ML) is good at

discovering underlying connections between data attributes

[36,43]. ML can be applied to seed selection because, as shown

by existing studies, the selection strategies are indeed learn-

able (i.e., exhibiting statistically significant patterns). With

sufficient learning data, ML can not only infer the importance

of different features but also mine the integration rules at scale.

MEUZZ is the first to explore the ML-based, data-driven ap-

proach to seed selection in hybrid fuzzing. Our result confirms

that automatically and continuously learned seed selection

strategies are more suitable for individual programs.

3 Background

Hybrid fuzzing [25, 49, 54] combines fuzzing and concolic

execution to address the deficiencies of both the approaches.

Figure 2 shows an overview of a general hybrid fuzzing

framework. The whole system consists of three major

components: fuzzer, concolic testing, and coordinator. For the

sake of brevity, we refer the interested readers to [2, 8, 23, 29]

for the technical details of fuzzing and concolic execution.

3.1 Hybrid Fuzzing

Fuzzing

Coordinator

Concolic Testing

Seeds
New
Seeds

Test
Cases

New Test
Cases

Fuzzing Monitor Job launcherSeed Selection

C

Program

Mutation Solver

(AFL) (KLEE/QSYM/Angr)

Figure 2: General hybrid fuzzing workflow.

We dissect the coordinator component as it is less discussed

in the literature and is the focus of this work. The coordinator

is a middleware that regulates the other two components. Its

major tasks include (i) monitoring the fuzzer to decide when

to launch the concolic execution engine, and (ii) prepare the

running environments for concolic testing; and (iii) select and

filter inputs that flow between fuzzer and concolic executor.

The seed selection module in the coordinator needs to

decide which seeds in the fuzzer’s queue should be transferred

to the concolic testing first (i.e., Seed utility prediction phase).

Before launching the concolic execution, the coordinator

needs to rank all inputs in the fuzzer’s queue based on their

utility. The utility of seed should correspond to the estimation

of its power to produce additional coverage if it is selected

to fuzz. As we mentioned in Section 2, current methods use

various heuristics to achieve this prioritization goal.

3.2 Supervised Machine Learning

Supervised ML is the task of learning from labeled data and

applies the knowledge to unknown data. Classification and

regression are two foremost categories of such algorithms.

While classification is used for predicting categorical

responses, regression predicts a numerical value to the new

data based on previously observed data. Supervised learning

has shown thriving employment in application security,

including bug discovery [30, 35, 37].

Supervised machine learning can be either online or offline.

The difference between these two lies in how models are

updated.

Online learning: Some learning environments can change

from second to second and their models need to get updated

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 79

(or relearned) as fast as they see a new sample. Under this

constraint of time, online learning shows promises by only

considering the new data to update the model, which makes it

an efficient approach. Basically, most learning algorithms that

are compatible (but not limited) with the standard optimization

algorithms like stochastic gradient descent (SGD) can learn

incrementally.

Offline learning: In contrast to online learning, the models in

offline learning need to be retrained with the whole dataset as

newer data appear. One of the successful examples of offline

supervised learning techniques is Random Forest (RF), which

has shown promising achievements, and in certain domains,

has even better performance than neural networks [28]. In ad-

dition to RF, deep learning has been shown success in different

domains; however, they are usually practiced on unstructured

data such as images and they require a relatively larger amount

of data to perform well [16]. Moreover, such techniques need

high computational power and longer time to train; hence they

are not suitable for the online fuzzing workflow.

4 System Design

4.1 System Overview

MEUZZ is the first machine learning-based hybrid fuzzer that

learns from the previously observed seeds and identifies which

kinds of seeds have the potentials to more effectively explore

the program being tested.

Figure 3 shows an overview of MEUZZ. MEUZZ starts

fuzzing (❶) a program with pre-defined or empty seeds. It

then extracts features (❷) from the program as well as the

seeds (§4.3) to model coverage gains. Such features are used

to predict (❸) the coverage that unknown seeds may provide

(§4.5). Concolic engine (❹) then receives the potentially influ-

ential seeds from the prior step and produces mutated seeds.

Next, MEUZZ guides the fuzzer to use these seeds and their

generated mutants–by the evolutionary algorithms–to continu-

ally test the program. In the beginning, the prediction model is

randomly initialized, so the prediction quality is uncertain. But

as fuzzing continues, the model gets improved and will provide

a more reliable prediction. MEUZZ updates the seed selection

model in three steps. First, it infers the descendent trees (❺) of

those seeds selected to the concolic engine in (❹); then, it de-

rives a label (❻) based on the descendant trees of the previously

selected seed (§4.4); finally, it updates or retrains the model

(❼) depending on the type of learning process (§4.5, §4.6).

4.2 System Requirements

MEUZZ aims to predict the seed utility in a more accurate

and generalizable fashion than the existing heuristic-based

approaches while keeping the fuzzing efficiency intact. One

of the steps that contribute the most in achieving these goals

is feature extraction. MEUZZ can potentially derive various

semantic features because it has access to complex program

Concolic
Engine

Fuzzer

ML Engine

Hybrid Features

- # Reachable Bugs
- # Indirect calls
- # Cmps
...

Hybrid Fuzzing

T
o
p
 P

o
te

n
tia

l
U

s
e
fu

l S
e
e
d
s

Feature Extraction Prediction

Update Seed Selection Model

Infer Seeds Labels Model Training

Seeds descendant

1

2 3

4

6 7

Off-L

On-L
En-L

Model

Seeds Program

5

Trees

Figure 3: System overview of MEUZZ. The coordinator is extended

with a ML engine, which consists of 4 modules – Feature extraction,

label inference, prediction and training modules. During fuzzing,

utility prediction and model training are carried out consecutively.

After extracting features for inputs in the fuzzer’s queue, the ML

engine can predict their utilities based on the current model. Then,

with the seed labels inferred from previously selected seeds, the

model is trained iteratively with the new data.

structures, such as the Control Flow Graph (CFG) with san-

itizer instrumentations. However, there are some challenges

that MEUZZ may encounter during feature extraction because

it requires to adapt the ML engine to the online-style fuzzing

workflow. To cope with such challenges, the feature engineer-

ing stage should meet the following requirements (R1–R3).

R1 - Utility Relevant: The ultimate goal of fuzzing is higher

code coverage as well as discovering a higher number of

hidden bugs. The features should reflect the characteristics that

may improve such measures. For instance, how much a seed is

likely to trigger more potential bugs or how much unexplored

code a mutated seed will reach during its execution. As it is

obvious, a seed is only meaningful in the context, which is the

program it is executed upon. Accordingly, feature extraction

needs to consider the seed and the program as a bundle.

R2 - Seed-/Program-Agnostic: To achieve generalizability,

the features should be seed-/program-agnostic. If a feature

is target-dependent, it downgrades the ability to generalize.

For example, one could engineer a boolean feature based on

the magic number that shows if a generated seed is genuine

or not. Although this feature looks useful to ignore invalid

seeds for fuzzing a specific program, it needs to be customized

for fuzzing different programs as the inputs’ formats change.

Contrarily, “meta properties” like the execution path triggered

by the input are more preferable, as it is a universally usable

characteristic regardless of the program.

80 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

R3 - Online Friendly: To keep the efficiency comparable to

heuristic-based approaches, it is not only important how fast

each feature can be extracted, but also the number of features is

concerned during model construction. If the features are both

light-weight and effective, it is assured that the coordinator

will not be blocked from launching the concolic executor and

at the same time able to construct meaningful models to predict

the seed utility. As a result, suitable features should strike a

balance between analysis richness (i.e., how informative is

the analysis result) and computation complexity (i.e., what

is the time complexity for the analysis).

4.3 Feature Engineering

The aforementioned requirements (R1–R3) guide us to

engineer the following list of features. We discuss them in four

categories.

Bug-triggering: Inspired by existing research [25], we use the

number of reachable sanitizer instrumentations as guidance

for measuring how likely bugs can be triggered. As sanitizer

instrumentations are based on sound analysis (i.e., no missed

bugs), it provides a good over-approximation when trying

to quantify the number of bugs that can be found. Hence, we

extract these two features:

1. Count of reachable sanitizer instrumentations: For all

branches throughout the path triggered by a given seed,

the number of reachable sanitizer instrumentations is

computed and then sum up. For instance, there are two

branches in the left example of Figure 4. There are six

potential bugs by following the branches, so the value

for this feature is six.

2. Count of reached sanitizer instrumentations: For all

branches throughout the path triggered by a given seed,

we sum up the number of reached sanitizer instrumen-

tations by the fuzzer. The major difference between this

feature and the prior one is that this feature reflects the

expectation of immediately solvable sanitizer bugs, while

the former feature is an indirect reflection. For instance,

the value of this feature in the right example of Figure 4

is two because the potential bugs can be directly reached

by negating the constraints from b1 and b2.

Coverage: Concolic execution is good at solving complex

branch conditions. Hence if there are a lot of previously

unsolved branches the concolic executor may encounter when

executing on the given input, it will significantly improve

the code coverage. The most common situations where

concolic execution can help is when a conditional statement

(i.e.,if-then-else or switch-case) exists. As the given

input will only follow one of the branches, we call those

branches stemmed from the same conditional statement

neighbor branches. So we extract the following feature to

estimate each seed’s potential of new coverage.

1. Count of undiscovered neighbor branches: For all

branches along the path triggered by the given seed,

Seed Seed

C
o
n
..

C
o
n
..

Figure 4: The examples that show how bug-triggering and coverage

features are computed.

we compare their neighbors, if any, with all previously

triggered branches. We then sum up the previously

undiscovered neighbors for each branch. For instance,

the value of this feature in the right example of Figure 4

is two if the seed follows the path with continue labels.

Constraint Solving: We also devised a set of features that

impact the solving capabilities of the concolic execution

engine. The incentive behind selecting such features is that the

performance of the concolic executor significantly influences

the entire hybrid fuzzing system.

1. Count of external calls: Existing concolic executors

either rely on a simulated procedure or simply terminate

the path execution when encountering an external

function. As a result, external function calls may have

negative impacts on the concolic executor, such as

misleading the path and causing failure to generate

correct seeds. This feature records the count of external

function calls along the path executed by the given seed.

2. Count of comparison instructions: This feature records

the count of cmp instructions along the path executed by

the given seed. Comparison instructions pose the con-

straints on the execution path, which will later be solved

by the SMT solver. However, constraint-solving is very

time-consuming and is often the reason for the timeout.

3. Count of indirect calls: This is the number of indirect call

instructions along the path executed by the given seed.

Indirect calls may cause state explosion because when

the concolic executor encounters an indirect call with a

symbolic pointer, it simply forks a state for each possible

value that can be resolved for the symbolic pointer [44].

In large programs, there could be many possible values

for a symbolic function pointer.

4. Length of path: This feature records the number of

executed branches (not deduplicated) by the given input.

It helps identify the existence of large loops, which is

another common reason that causes state explosion and

solver timeout.

Empirical: This set of features is devised based on the

empirical observations by existing works. They might

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 81

indirectly affect fuzzing performance.

1. Input size: Size of the input is often employed by existing

tools as a heuristic to make a scheduling decision. On

the one hand, smaller size inputs often end the execution

more quickly and then leave more time for the fuzzer or

concolic executor to explore other inputs [13, 53]. On the

other hand, larger input has a better chance to trigger more

functionalities [25]. Therefore, we consider the input

size as one of the potential features for our approach.

2. First seed with new coverage: This is a boolean value in-

dicating whether the given seed is the first one to discover

some new branches or not. This is based on the intuition

that such seeds are more likely to trigger more new cover-

age. This feature is used in many popular fuzzers [8, 33].

3. Queue size: This feature records how many inputs are

saved in the fuzzing queue at the time of the query. If the

queue is long, it is less likely to see more new coverage.

Since MEUZZ needs to predict the utility of each seed

during runtime, namely how much more new coverage

can be discovered by fuzzing with the given input, the

prediction should consider the current status of fuzzing.

4.4 Seed Label Inference

Labeling is an indispensable stage of data preprocessing in

supervised learning. Well-defined labels make the prediction

much easier and more reliable. As we aim to predict the utility

of a selected seed and there is no direct indication to show if

the selected seed is definitely useful, we need to derive a label

by which we show the proportion of the seed utility.

To understand the utility of a seed, we need to fuzz the

program with that seed and check the outcome. Fuzzers that

use genetic algorithms (GAs) for seed generation represent

such an outcome as a forest of input descendant tree, which

depicts the parent-child relationship of the seeds in the fuzzer’s

queue. Each node of the tree represents a seed, and each edge

connects a seed to one of its mutants.

In plain fuzzing, the root nodes are the original seeds

provided by the user. Similarly, in hybrid testing, we model the

inputs that are selected to be executed concolicly as the root

nodes. When an input is selected to explore, the concolic en-

gine will produce mutants of the running input. These mutants

can further cover the neighbor branches (§ 4.3) of the re-visited

path. After these mutants get transferred back to the fuzzer’s

queue, the fuzzer can use GA to further mutate them. As a

result, we can draw the parent-child edges from the selected

input to the mutants generated by the concolic engine, and to

their GA-derived offsprings to form a mega descendant tree.

If the descendant tree of a seed is larger, it comparatively

means the seed contributes more to the fuzzer’s code coverage.

Hence, to derive the label, we measure the size of the input

descendant tree of a seed and consider it as the label.

In reality, it is not feasible to compute the complete

descendant tree since it could grow indefinitely if the user

never terminates the fuzzing process. As a result, we have

to limit the tree analysis to a time window to make the label

inference possible. Specifically, after the fuzzer imports a

seed from concolic executor, we wait for a certain number of

fuzzing epochs for the fuzzer to explore the imported seed and

then compute the size of its descendant tree.

4.5 Model Construction and Prediction

The next step after preparing the data is to predict the seed

prominence (i.e., label). As the seed labels are the number of

nodes in the seed descendant tree, their values are continuous

so we need a regression model to predict them. Hence, we

embed a regression model in MEUZZ in a way that when

new seeds are generated by the fuzzer, the model predicts the

utility of the seeds and then transfer the potential seeds to the

concolic engine.

MEUZZ predicts very naively or just random at the beginning

of fuzzing because the model just sees a few samples. However,

the prediction becomes more reliable when more seeds are

generated–data plays a crucial role in advancing model–and

the model receives updates.

As seeds are mutated continuously during fuzzing a program

in real-time, prediction and model update need to be done in

a limited time window. Such limitation makes online learning

approaches desirable candidates for model construction. In

online-learning, the model can be incrementally updated by

only considering new data. It does not need to store all previous

data and to learn a model from scratch in every iteration.

Instead, the model can be updated incrementally based on the

incoming input, previous model and historical fuzzing yields.

Such an update is very fast and requires less storage, which

fits our use case very well. Thus we adopt online learning as

one of the techniques for model construction.

4.6 Updating Model

To assure the model is entirely up-to-date with the prevailing

seeds, ideally, we need to dynamically update/retrain the

model, depending on the learning type (i.e., online vs. offline).

By doing so, we can both predict and learn in real-time.

For online learning, we use the Recursive Least Square

(RLS) algorithm [21, 46] to update our linear model. Suppose

at time t, the input data and the label are xt and yt correspond-

ingly, where xt is a vector of d-dimension. The following

formula shows how the weight of the model at time t (i.e., wt)

is updated based on the weight obtained from the previous

model (i.e., wt−1):

wt =wt−1+C−1
t xt

[

yt−xT
t wt−1

]

where C−1
t is the inverse of for Ct , and Ct is defined as:

Ct =
t

∑
i=1

xixi+λI

82 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

Note that to calculate C−1
t , we do not need to store all previous

data and compute the inverse. Based on the Woodbury formula,

C−1
t can also be updated recursively as follows:

C−1
t =C−1

t−1−
C−1

t−1xtx
T
t C−1

t−1

1+xT
t C−1

t−1xt

The complexity for such an update is O(d2).
To update the offline learning algorithms, the model needs

to be retrained with all historical data in every iteration.

Although retraining the model with the whole dataset every

time a new seed is coming seems to be time-consuming, we

show in our evaluation the approach is still practical in our

case (§6.3). One reason is that the seed attributes are not of

very high dimension and the number of seeds that need to be

retrained is within an acceptable order of magnitude.

5 Implementation

Among the three components of MEUZZ, two of them are based

on off-the-shelf software. We employ AFL-2.52b [33] for the

fuzzing module and the re-engineered variant of KLEE from

SAVIOR [25] for concolic execution. We develop the coordina-

tor component from scratch in Python in 3,152 SLOC. Below,

we detail the implementation of the major components of the

ML engine, namely feature extraction and label inference.

Feature extraction: As discussed in §4.2, considering the

trade-off between computational complexity and accuracy is

key in feature extraction. Hence, for developing complicated

features, we use a combination of static and dynamic analyses

to offload the heavy tasks to compile time as much as possible.

For instance, to extract the bug triggering features, we first

instrument the target program with UBSan [15] at compile

time. Then, a reachability analysis based on SVF [50] is used

to extract the number of sanitizer instrumentations that can be

reached from each branch. During runtime, we simply collect

all the triggered branches by replaying the input and add up the

number of reachable instrumentations from these branches.

To extract the feature of undiscovered neighbors, we

record the branches and their neighbors at compile time. This

information is later used to query whether any neighbor of a

triggered branch is covered. To facilitate fast queries, we store

the neighbor list as a disjoint-set data structure and use the

union-find algorithm to query during runtime.

We extract the rest of the features either via compile-time

instrumentation (e.g.,cmp, call instructions) and runtime

input replay or via operating system APIs (i.e., size, queue

size, and new coverage).

Label inference: To collect the size of seed descendant tree,

we traverse AFL’s fuzzing queue. Thanks to the seed naming

system of AFL (i.e., [id, source, mutation, new cov]), we

can iteratively traverse the seeds and use transitive closure to

collect all the inputs imported from the concolic executor and

their descendant trees.

Table 1: Evaluation settings

Program Settings

Name Version Driver Initial Seeds Options

tcpdump 4.10.0 tcpdump [14] -r @@

binutils 2.32 objdump [5] -D @@

binutils 2.32 readelf [5] -A @@

libxml 2.9.9 xmllint [11] stdin

libtiff 4.0.10 tiff2pdf [10] @@

libtiff 4.0.10 tiff2ps [10] @@

jasper 2.0.16 jasper [9] -f @@ -T pnm

libjpeg jpeg9c djpeg [9] stdin

6 Evaluation and Analysis

We conduct a comprehensive set of experiments to answer the

following research questions:

• RQ1: Can ML-based seed scheduling outperform

heuristics-based approaches (§ 6.2 and § 6.6)?

• RQ2: Which features are more important in predicting

seed utility and which learning mode is more effective

(§ 6.3)?

• RQ3: Does the learned model adapt well to different

fuzzing configurations (§ 6.4)?

• RQ4: Is it feasible to transfer the learned model from

a program to other programs to improve fuzzing yields

(§ 6.5)?

6.1 Evaluation setup

Following the general fuzzing evaluation guideline [32],

we choose 8 real-world benchmark programs commonly

used by existing work [19, 24, 25, 54, 55]. Table 1 shows the

configurations used for fuzzing each program. All experiments

are conducted on AWS c5.18xlarge servers running Ubuntu

16.04 with 72 cores and 281 GB RAM. Without explicitly

mention, all tests run for 24 hours each by assigning three

CPU cores to each fuzzer and are repeated at least 5 times; we

report the average result with Mann-Whitney U-test.

We compare MEUZZ with the state-of-the-art grey-box

fuzzers, such as AFL [33], AFLFast [19], and Angora [24],

as well as hybrid testing systems including QSYM [54] and

SAVIOR [25]. The seed selection modules of all these previous

systems are based on heuristics. We could not test Driller [49]

on the chosen benchmarks because its concolic execution

engine fails to run them. Moreover, we test Vuzzer [41] and

T-Fuzz [39] but we compare them with MEUZZ in a different

way than we do with the other fuzzers. This separate compar-

ison is because these two fuzzers do not support concurrent

fuzzing. Due to the space limit, we discuss our observations

and show the results of their branch coverage in Appendix C.

For MEUZZ, we consider three different configurations ac-

cording to the learning process, namely MEUZZ-OL, MEUZZ-

RF and MEUZZ-EN, which refer to online learning linear

model, offline learning random forest model and the arithmetic

average of the first two models’ utility predictions, respectively.

Since Savior and QSYM need at least three CPU cores,

we enforce this fuzzing setting to all the fuzzers to build a

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 83

fair comparison environment. We launch one master and two

slaves for the grey-box fuzzers; and one master, one slave, and

one concolic execution engine for the hybrid fuzzers. To reduce

the randomness of OS scheduling, we pin each component of

the fuzzers on the specific core. Because MEUZZ and SAVIOR

instrument the testing program with UBSAN [15], we also

apply this sanitizer to all other fuzzers, as enabling sanitizers is

shown to improve the fuzzer’s effectiveness for finding bugs.

6.2 Learning Effectiveness

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

5000

10000

15000

20000

25000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(a) tcpdump branch coverage (p1=0.071,

p2=0.005, p3=0.082)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

1000

2000

3000

4000

5000

6000

7000

8000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(b) objdump branch coverage (p1=0.044,

p2=0.056, p3=8.2∗e−4)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

1000

2000

3000

4000

5000

6000

7000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(c) libxml branch coverage (p1=0.035,

p2=0.059, p3=0.054)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

2000

4000

6000

8000

10000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(d) tiff2pdf branch coverage

(p1=8.2∗e−4, p2=5.6∗e−4, p3=6.2∗e−5)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

1000

2000

3000

4000

5000

6000

7000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(e) tiff2ps branch coverage (p1=0.035,

p2=0.091, p3=0.017)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

2000

4000

6000

8000

10000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(f) jasper branch coverage (p1=0.037,

p2=0.192, p3=0.015)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

200

400

600

800

1000

1200

1400

1600

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(g) readelf branch coverage (p1=0.012,

p2=0.093, p3=8.2∗e−4)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

1000

2000

3000

4000

5000

6000

7000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(h) djpeg branch coverage (p1=0.072,

p2=0.021, p3=0.093)

Figure 5: Branch coverage fuzzing with valid seeds (higher is

better). p1, p2 and p3 are p-values in Mann-Whitney U Test by

comparing QSYM with MEUZZ-OL, MEUZZ-RF and MEUZZ-EN,

respectively.

Table 2: Execution time spend on different learning stages

Model Update (s) Prediction(s)
Feature Extraction (s)

Online Offline Online Offline

0.000636 0.326139 0.000016 0.003168 5e−6

The most straightforward metric to measure the effective-

ness of MEUZZ is code coverage, which is also a widely

accepted and evaluated metric. Figure 5 shows the branch

coverage achieved by different fuzzers to the required time

for fuzzing. Based on the coverage result, we have several

interesting findings.

First, MEUZZ covers more code than other fuzzers in most

programs after 24 hours of fuzzing. Among the non-ML

fuzzers, QSYM performs the best in terms of code coverage,

thanks to its efficient concolic execution engine tailored spe-

cially for hybrid fuzzing. Compared with QSYM, the MEUZZ

variants achieve various levels of coverage improvements. In

tcpdump, objdump, readelf and libxml, MEUZZ improves

code coverage over QSYM by more than 10%, and particularly

27.1% by MEUZZ-RF in readelf. In tiff2pdf and tiff2ps,

MEUZZ also has moderate coverage improvements. However,

in jasper and djpeg, there is no much difference between

MEUZZ and QSYM; we speculate it is because all fuzzers are

saturated and hit a plateau after 6 hours.

Second, MEUZZ covers less code in the beginning but grad-

ually surpasses other fuzzers as time progresses. For example,

in objdump MEUZZ-OL and MEUZZ-RF did not cross QSYM

and SAVIOR until after 9.6 hours of fuzzing, but MEUZZ

eventually achieves 14% higher code coverage. Similar situa-

tions can be observed in libxml, readelf and tiff2ps. This

observation is expected, as MEUZZ starts seed scheduling with

random parameters, hence the performance of seed selection

is unpredictable at the beginning. But as time passes, fuzzing

data are increasingly collected and used to refine the prediction

model. Hence, the prediction becomes more accurate.

Lastly, the effectiveness of ML is presented in Figure 10 in

Appendix D. It is shown that different programs are variously

affected by different sets of features. For instance, External

Calls has more influence on six of the programs except for

tcpdump and djpeg, showing that no single feature is suffi-

cient to predict high-utility seeds. By using a data-driven ap-

proach, we cannot only automatically select the high impactful

features in different programs or situations, but also integrate

them in a more optimal way than manual-crafting rules.

6.3 Insights and Analyses

Online v.s Offline learning: As mentioned in the previous

section, offline learning with the random forest model

sometimes beats online learning with the linear model;

however, the main concern with using offline learning is time

delays, especially during the model updating stage.

To further analyze the effects of time delays caused by

offline learning, we profile each learning stage during the 24

84 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

rea
cha

ble
 la

be
l

siz
e

ex
tca

ll

pa
th

len
gth cm

p

rea
che

d l
ab

els

un
dis

cov
ere

d n
eig

hb
ou

rs
ind

cal
l

ne
w co

v

Feature

0.0

0.1

0.2

0.3

0.4

0.5
Gi

ni
 Im

po
rta

nc
e

Figure 6: The box plots show the importance of the features on nine

programs. The importance is extracted by training an offline random

forest model and they are ranked by the median of their importance.

Reachable label and New Cov are the most and the least important

ones, respectively.

hours of fuzzing and report the average time spend on different

learning steps. As shown in Table 2, although offline learning

spent 512x and 198x more time than online learning on

updating the model and making predictions, respectively, the

absolute time-lapse is negligible (i.e., in milliseconds). Hence,

offline learning is not a critical hindrance throughout the hybrid

fuzzing loop, which endorses the offline learning effectiveness

discussed in Section 6.2. Having said that, if fuzzing continues

for a longer time and the number of seeds significantly

increases, offline learning can become an obstacle.

Feature Analysis: Figure 6 presents the distribution of the

importance of each feature separately in all programs. The

importance score is computed by capturing the mean decrease

impurity from the offline random forest models [22]. The

figure shows the contribution of the New Cov feature is the

least among all the features. While it is difficult to entirely

disregard the minor contribution of New Cov, this suggests

that putting much effort to follow the seeds that bring new

coverage might jeopardize the chance to explore unknown

seeds. This is also known as the famous Multi-Armed Bandit

(MAB) problem [18]. This finding might shed some light on

the scheduling algorithm implemented in the popular fuzzers

like AFL [33] that heavily rely on the New Cov heuristics.

Also, the variance of change in the figure shows some of

the features like Path Length and New Cov are less subject to

programs, while others like Reachable Label are more tied

to programs. If the extraction of a feature heavily depends on

static analysis, it is less precise compared with dynamic analy-

sis because the sensitivity of static analysis affects the precision

(i.e., flow/context/field sensitivity). We speculate this is one of

the reasons that make a feature (e.g., Reachable Label) more

dependent on individual programs. Also, there are additional

factors that might affect dependability. Program loops as a

common trait in all programs uniformly affect the Path Length

feature, which makes the feature more agnostic to programs.

Similarly, New Cov is set to a seed during runtime when it is the

first one to trigger new behaviors (e.g., coverage); this attribute

is generally applicable to a variety set of programs.

It is worth noting that the average time to extract each

feature is only 5µs (as shown in Table 2), thanks to our

light-weight feature extractions. This indicates that the

online-friendly requirement is satisfied in MEUZZ.

6.4 Model Reusability

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

5000

10000

15000

20000

25000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(a) tcpdump branch coverage (p1=0.047,

p2=0.018, p3=0.026)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

1000

2000

3000

4000

5000

6000

7000

8000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(b) objdump branch coverage (p1=0.051,

p2=2.33∗e−3, p3=5.7∗e−3)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

1000

2000

3000

4000

5000

6000

7000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(c) libxml branch coverage (p1=0.072,

p2=0.032, p3=0.026)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(d) tiff2pdf branch coverage (p1=0.02,

p2=0.03754, p3=5.7∗e−3)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

1000

2000

3000

4000

5000

6000

7000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(e) tiff2ps branch coverage

(p1=6.04∗e−4, p2=0.012, p3=5.6∗e−3)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(f) jasper branch coverage (p1=0.264,

p2=0.0268, p3=1.3∗e−3)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

200

400

600

800

1000

1200

1400

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(g) readelf branch coverage (p1=0.03,

p2=0.072, p3=0.037)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

500

1000

1500

2000

2500

3000

B
ra

n
ch

 c
o
v
e
ra

g
e

AFL
AFLFast
Angora
QSYM
SAVIOR
MEUZZ-OL
MEUZZ-RF
MEUZZ-EN

(h) djpeg branch coverage (p1=6.04∗e−3,

p2=0.012, p3=3.68∗e−3)

Figure 7: Branch coverage fuzzing with naive seeds (higher is

better). p1, p2 and p3 are p-values in Mann-Whitney U Test by

comparing QSYM with MEUZZ-OL, MEUZZ-RF and MEUZZ-EN,

respectively.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 85

Building machine learning models is a valuable but time-

consuming task. It is reasonable to build and reuse models

where possible. By reusing a model, one can improve gener-

alization, speed up training, as well as improving the model

accuracy. Also, reusability can be good evidence that our model

correctly captured what kind of inputs have higher utility when

testing the target programs. Hence, we test the reusability of the

learned models obtained via the previous fuzzing experiments.

We conduct an experiment in which we use a pre-trained

model for fuzzing the same target program and compare the

coverage difference. We make the following two changes

in the experiment performed in § 6.2: (i) the initial seeds are

replaced by a naive input that only consists 4 whitespaces; and

(ii) all MEUZZ variants are initialized with the models they

learned in the effectiveness test (with valid initial seeds).

Figure 7 shows the coverage result with Mann-Whitney

U Test. There are several interesting observations. The most

important one is that the MEUZZ variants start performing

well even at the beginning of fuzzing compared with when

there is no model initialization. We believe this improvement

is brought by the initial models. Additionally, “pure-AFL”

fuzzers do not perform well with this naive initial seed. For in-

stance, intcpdump,AFL and AFLFast only generate 6 inputs in

total after 24 hours of fuzzing (see Figure 7a). On the contrary,

systems augmented with other input generation techniques

such as concolic execution and taint analysis can generate

more inputs and consequently can explore significantly more

code. Lastly, MEUZZ-RF outperforms its peers in djpeg, and

its p-value indicates the improvement is significant (<0.05),

suggesting the non-linear model works better on djpeg.

6.5 Model Transferability

tc
pd
um

p

ob
jd
um

p

re
ad
el
f

lib
xm
l

tif
f2
pd
f

tif
f2
ps

ja
sp
er

dj
pe
g

tcpdump

objdump

readelf

libxml

tiff2pdf

tiff2ps

jasper

djpeg

2.8 -3.5 -2.3 -4.5 -3.6 -1.2 -3.3 -4.5

-2 3.1 4.7 -0.88 0.1 -1.8 1.9 -1.2

57 30 22 9.9 14 20 34 34

2.6 -2.6 -0.22 9.1 17 -1.8 -1.1 6.3

3.5 4.9 3.3 4.4 5 1.8 1.6 4.5

3.3 3.2 7.9 10 6.2 6.6 3.9 2.2

3.6 7.2 8.8 -0.17 3.4 1.7 6.7 -0.34

0.81 0.4 1 0.2 1.3 1.3 -1.8 1.5
8

4

0

4

8

Figure 8: This heat map shows Coverage improvement with model

initialization for MEUZZ-OL over vanilla MEUZZ-OL. Y-axis is the

tested programs, X-axis is the models used for initialization. Each

cell shows the relative coverage comparison (%). The diagonal values

show the coverage improvement on each program after initializing

MEUZZ with model learn from the same program (reusability).

Model transferability is shown in 7 out of the 8 programs.

To further evaluate the model reusability explained in the

previous section, we conduct a cross-program experiment to

determine whether a model trained on one type of program

will transfer well to fuzzing a new program. This is known

as transfer learning in the ML field [38]. As far as we know, no

prior research has attempted to show this invaluable analysis

in fuzzing [42].

In this experiment, we augment MEUZZ with a pre-trained

model from one program and compare the result of the fuzzer

on different programs with a baseline. Our baseline is the cov-

erage result from the learning effectiveness experiment (§ 6.2),

in which we use valid seeds to bootstrap fuzzing without model

initialization. We choose MEUZZ-OL as the representative

of our system to measure this transferability experiment. We

then fuzz each program using MEUZZ-OL initialized with the

8 pre-learned models; the models are fixed afterward.

Figure 8 visualizes the comparative coverage improvements

(i.e., percentage) produced by each fuzzing configuration. The

Y-axis shows the tested program and the X-axis shows the

programs by which the models are built. This result shows

three interesting findings.

First, MEUZZ-OL observes 7.1% more code coverage on

average when it is tested on the same program it is initialized

with. The amount of improvement for each program is shown

in the diagonal of Figure 8, from top left to bottom right.

Note that these models are only learned in 24 hours from

previous experiments; we expect to see more improvement in

continuous fuzzing services (e.g., [12]). This again confirms

that the previously learned models are reusable.

Second, MEUZZ-OL observes improvement in 38 out

of 56 cross-testing cases, which shows 67.9% success rate

when the model is transferred from a program to another

program. Among them, 10 cases see more than 10% coverage

improvement. Such improvement also indicates that the

program-agnostic requirement is satisfied in MEUZZ.

Last but not least, we notice different programs have

different “sensitivity” towards the transferred models. For

instance, almost all the transferred models can strengthen

fuzzing readelf, tiff2pdf, tiff2ps and djpeg programs,

among which readelf sees the highest improvement.

Interestingly, readelf achieves even higher improvement

when using the tcpdump model than the readelf model by

itself. However, other programs are only partially accepting

foreign models. For instance, the model of tcpdump can

outperform almost all of the programs, while none of the other

seven external models can improve its fuzzing yields.

Two main reasons can justify the aforementioned obser-

vation, namely the number of data points as well as feature

importance. When there is more data, the model can better

generalize [31]. For instance, the tcpdump model contains a

higher number of seeds compared with others (see Figure 1),

which justifies the effectiveness of the transferred model built

from the tcpdump program. We also compared the importance

of the features of each program (see Appendix D). The shape

86 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

Table 3: The table shows the unique bugs found by all evaluated

fuzzers.

Program AFL AFLFast Angora QSYM Savior MEUZZ All unique bugs

tcpdump 14 13 12 11 12 14 14

objdump 2 2 5 2 8 6 9

readelf 3 2 5 5 4 4 6

tiff2pdf 1 1 1 2 2 2 2

tiff2ps 1 2 2 5 4 6 6

jasper 2 1 0 3 1 6 8

djpeg 9 7 7 9 9 9 9

Total 32 28 32 37 40 47 54

of the final importance chart in tcpdump diverges more from

the rest of the programs. Moreover, the values of some features

such as Indirect Call and Path Length are higher than other

programs. By looking at these statistics as well as checking

the source code of tcpdumpwe noticed tcpdump is designed

with heavier use of function handlers for different types of

network packets and recursive loops for parsing packet fields.

While other models contain different feature value distribution

as well as fewer data points, which justify the failure of using

them to improve fuzzing tcpdump.

6.6 Discovered Bugs

To prove the effectiveness of our system in discovering new

bugs, we performed various analyses. We manually analyzed

all of the reported undefined behaviors and crashes. UBSan

reports a large amount of undefined behaviors; however, the

majority of them are deemed benign after our triage process.

We also triage additional bugs with the help of ASAN [1] and

LeakSAN [7].

Table 3 shows our triage result for all the fuzzers. In total,

54 unique bugs were uncovered. MEUZZ outperforms other

fuzzers and found 47 unique bugs, which supports the fact

that higher code coverage correlates to a higher number of

triaged bugs. Due to space limit, we present more detailed

triage result and one of the discovered bugs only found by

MEUZZ in Appendix B. This result shows MEUZZ is more

effective in terms of finding bugs than state-of-the-art systems

with manually crafting heuristics.

7 Related Work

7.1 ML for Fuzzing

Despite the promising potential to improve fuzzing, the

application of ML has not been very-well investigated in

the past and only a few research have leveraged ML. ML

can be integrated into various stages of fuzzing, from input

generation to crash categorization.

Input generation: The most intelligent stage of fuzzing

has been the input generation stage so far, thanks to genetic

algorithms. Deep learning (DL) techniques have been recently

applied to input generation for both mutation/generation-based

fuzzing. Such approaches [30, 40, 47] use various neural

network methods to learn the patterns that exist in input

files and then identify the likely input forms to trigger new

coverage. Similarly, reinforcement learning (RL) [20] can

learn input grammar for generation-based fuzzers.

Crash analysis: Automating the analysis of outputs/crashes

generated by fuzzers is another ML application. For instance,

ML can be used to categorize crashes by identifying the

root cause of them. This helps remove duplicate outputs and

therefore reduces manual analysis effort [26]. Or another

example is employing ML to predict whether the reported

crashes by fuzzers are exploitable [52].

To the best of our knowledge, there has not been any

research that practices ML for seed selection. In general, the

practicality of ML for fuzzing has not been shown clearly in the

past due to the uncertainty about reusability and transferability.

7.2 Seed Scheduling Heuristics

Scheduling in fuzzing: FuzzSim [51] models the seed

scheduling problem as a weighted coupon collector problem

and found out that scheduling can have a direct impact on

fuzzing campaign yields. Later, in grey-box fuzzing, AFL [33]

implements a scheduling algorithm that consists of simple

heuristics such as preferring first seed with new coverage,

and with smaller size and less execution time. This simple

algorithm is later improved by Fairfuzz [34] and AFLFast [19]

which steer the fuzzer towards less explored paths.

Scheduling in hybrid testing: As hybrid testing becomes

more popular, seed scheduling also becomes a research topic.

Driller [49] implements a random scheduling algorithm, while

QSYM [13] implements heuristics similar to AFL. Later,

DigFuzz [55] shows the ineffectiveness of random scheduling

and proposes a Monte-Carlo model to predict the difficulty

of each path explored by the fuzzer by far, and send the most

difficult ones to concolic executor. SAVIOR [25], on the other

hand, uses bug-driven scheduling heuristics. By selecting

the seeds that can reach more sanitizer instrumentations, it

triggers more bugs in the given timeframe than other fuzzers.

Compared with these approaches, MEUZZ applies machine

learning techniques that can learn a utility prediction model,

which is adaptive to the program being tested. As our

evaluation suggests, this approach is more scalable and more

performant than the manual-crafting scheduling heuristics.

8 Conclusion

We present MEUZZ, a hybrid fuzzing system featuring

machine learning and data-driven seed scheduling. Theo-

retically, MEUZZ is more generalized than systems using

fixed seed selection heuristics. For effective integration of

machine learning workloads into the online hybrid fuzzing

loop, MEUZZ follows the requirements of being utility

relevant, online friendly and program agnostic for its feature

engineering and label inference. Our evaluation shows that

MEUZZ outperforms state-of-the-art fuzzers in both code

coverage and bug discovery. In addition, the learned models

demonstrate good reusability and transferability, making it

more practical to apply machine learning to hybrid fuzzing.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 87

Acknowledgment

The authors would like to thank the anonymous reviewers for

their insightful comments. This project was supported by the

National Science Foundation (Grant#: CNS-1748334) and

the Office of Naval Research (Grant#: N00014-17-1-2891).

Any opinions, findings, and conclusions or recommendations

expressed in this paper are those of the authors and do not

necessarily reflect the views of the funding agencies.

References

[1] Addresssanitizer. https://clang.llvm.org/docs/

AddressSanitizer.html.

[2] Afl technical details. http://lcamtuf.coredump.cx/

afl/technical_details.txt.

[3] angr/tracer: Utilities for generating dynamic traces.

https://github.com/angr/tracer.

[4] Announcing oss-fuzz: Continuous fuzzing

for open source software. https:

//testing.googleblog.com/2016/12/

announcing-oss-fuzz-continuous-fuzzing.

html.

[5] Binutils test cases. https://github.com/mirrorer/

afl/tree/master/testcases/others/elf.

[6] Darpa cyber grand challenge. http://archive.darpa.

mil/cybergrandchallenge/.

[7] Leaksanitizer. https://clang.llvm.org/docs/

LeakSanitizer.html.

[8] libfuzzer – a library for coverage-guided fuzz testing.

https://llvm.org/docs/LibFuzzer.html.

[9] Libjpeg test cases. https://github.com/mirrorer/

afl/tree/master/testcases/images/jpeg.

[10] Libtiff test cases. https://github.com/mirrorer/

afl/tree/master/testcases/images/tiff.

[11] Libxml test cases. https://github.com/mirrorer/

afl/tree/master/testcases/others/xml.

[12] Oss-fuzz - continuous fuzzing for open source software.

https://github.com/google/oss-fuzz.

[13] Qsym: A practical concolic execution en-

gine tailored for hybrid fuzzing. https:

//github.com/sslab-gatech/qsym.

[14] Tcpdump test cases. https://github.com/

the-tcpdump-group/tcpdump/tree/master/

tests.

[15] Undefined behavior sanitizer - clang 9 doc-

umentation. http://clang.llvm.org/

docs/UndefinedBehaviorSanitizer.html#

ubsan-checks.

[16] When does deep learning work better than svms or ran-

dom forests? https://www.kdnuggets.com/2016/

04/deep-learning-vs-svm-random-forest.html,

04 2016.

[17] Cyber grand shellphish. http://www.phrack.org/

papers/cyber_grand_shellphish.html, 2017.

[18] Donald A Berry and Bert Fristedt. Bandit problems:

sequential allocation of experiments (monographs on

statistics and applied probability). London: Chapman

and Hall, 5:71–87, 1985.

[19] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-

hury. Coverage-based greybox fuzzing as markov chain.

In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, pages

1032–1043. ACM, 2016.

[20] Konstantin Böttinger, Patrice Godefroid, and Rishabh

Singh. Deep reinforcement fuzzing. CoRR,

abs/1801.04589, 2018.

[21] Léon Bottou. Online learning and stochastic approxima-

tions. On-line learning in neural networks, 17(9):142.

[22] L Breiman, JH Friedman, R Olshen, and CJ Stone.

Classification and regression trees. 1984.

[23] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee:

Unassisted and automatic generation of high-coverage

tests for complex systems programs. In Proceedings

of the 8th USENIX Conference on Operating Systems

Design and Implementation, pages 209–224. USENIX

Association, 2008.

[24] Peng Chen and Hao Chen. Angora: Efficient fuzzing by

principled search. In 2018 IEEE Symposium on Security

and Privacy (SP), pages 711–725. IEEE, 2018.

[25] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei,

and L. Lu. Savior: Towards bug-driven hybrid testing.

In 2020 IEEE Symposium on Security and Privacy (SP),

pages 2–2, Los Alamitos, CA, USA, may 2020. IEEE

Computer Society.

[26] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel.

Rebucket: A method for clustering duplicate crash

reports based on call stack similarity. In 2012 34th

International Conference on Software Engineering

(ICSE), pages 1084–1093, June 2012.

88 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

[27] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim

Leek, Andrea Mambretti, Wil Robertson, Frederick

Ulrich, and Ryan Whelan. Lava: Large-scale automated

vulnerability addition. In Proceedings of the 2016

IEEE Symposium on Security and Privacy (SP), pages

110–121. IEEE, 2016.

[28] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro,

and Dinani Amorim. Do we need hundreds of classifiers

to solve real world classification problems? J. Mach.

Learn. Res., 15(1):3133–3181, January 2014.

[29] Patrice Godefroid, Michael Y Levin, David A Molnar,

et al. Automated whitebox fuzz testing. In NDSS,

volume 8, pages 151–166, 2008.

[30] Patrice Godefroid, Hila Peleg, and Rishabh Singh.

Learn&fuzz: Machine learning for input fuzzing. In

Proceedings of the 32Nd IEEE/ACM International Con-

ference on Automated Software Engineering, ASE 2017,

pages 50–59, Piscataway, NJ, USA, 2017. IEEE Press.

[31] Alon Halevy, Peter Norvig, and Fernando Pereira. The

unreasonable effectiveness of data. IEEE Intelligent

Systems, 24(2):8–12, March 2009.

[32] George Klees, Andrew Ruef, Benji Cooper, Shiyi

Wei, and Michael Hicks. Evaluating fuzz testing. In

Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security, pages

2123–2138. ACM, 2018.

[33] lcamtuf. american fuzzy lop. http://lcamtuf.

coredump.cx/afl/, 2015.

[34] Caroline Lemieux and Koushik Sen. Fairfuzz: Targeting

rare branches to rapidly increase greybox fuzz testing

coverage. CoRR, abs/1709.07101, 2017.

[35] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai

Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong.

Vuldeepecker: A deep learning-based system for

vulnerability detection. In Network and Distributed

System Security Symposium (NDSS), 2018.

[36] Mehryar Mohri, Afshin Rostamizadeh, and Ameet

Talwalkar. Foundations of Machine Learning. The MIT

Press, 2012.

[37] M. Nayrolles and A. Hamou-Lhadj. Clever: Combining

code metrics with clone detection for just-in-time fault

prevention and resolution in large industrial projects.

In 2018 IEEE/ACM 15th International Conference on

Mining Software Repositories (MSR), pages 153–164,

May 2018.

[38] S. J. Pan and Q. Yang. A survey on transfer learning.

IEEE Transactions on Knowledge and Data Engineering,

22(10):1345–1359, Oct 2010.

[39] Hui Peng, Yan Shoshitaishvili, and Mathias Payer.

T-fuzz: fuzzing by program transformation. In 2018

IEEE Symposium on Security and Privacy (SP), pages

697–710. IEEE, 2018.

[40] Mohit Rajpal, William Blum, and Rishabh Singh. Not

all bytes are equal: Neural byte sieve for fuzzing. CoRR,

abs/1711.04596, 2017.

[41] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian

Cojocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:

Application-aware evolutionary fuzzing. In Proceed-

ings of the Network and Distributed System Security

Symposium (NDSS), 2017.

[42] Gary J Saavedra, Kathryn N Rodhouse, Daniel M

Dunlavy, and Philip W Kegelmeyer. A review of

machine learning applications in fuzzing. arXiv preprint

arXiv:1906.11133, 2019.

[43] Adam Santoro, David Raposo, David G. T. Barrett, Ma-

teusz Malinowski, Razvan Pascanu, Peter W. Battaglia,

and Timothy P. Lillicrap. A simple neural network

module for relational reasoning. CoRR, abs/1706.01427,

2017.

[44] Edward J Schwartz, Thanassis Avgerinos, and David

Brumley. All you ever wanted to know about dynamic

taint analysis and forward symbolic execution (but might

have been afraid to ask). In 2010 IEEE symposium on

Security and privacy, pages 317–331. IEEE, 2010.

[45] Konstantin Serebryany, Derek Bruening, Alexander

Potapenko, and Dmitry Vyukov. Addresssanitizer: A

fast address sanity checker. In Proceedings of the 2012

USENIX Conference on Annual Technical Conference,

pages 28–28. USENIX Association, 2012.

[46] Shai Shalev-Shwartz and Shai Ben-David. Under-

standing machine learning: From theory to algorithms.

Cambridge university press, 2014.

[47] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,

Baishakhi Ray, and Suman Jana. Neuzz: Efficient fuzzing

with neural program smoothing. In NEUZZ: Efficient

Fuzzing with Neural Program Smoothing. IEEE, 2018.

[48] Evgeniy Stepanov and Konstantin Serebryany. Mem-

orysanitizer: fast detector of uninitialized memory use

in c++. In Proceedings of the 13th Annual IEEE/ACM

International Symposium on Code Generation and

Optimization, pages 46–55. IEEE, 2015.

[49] Nick Stephens, John Grosen, Christopher Salls, An-

drew Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan

Shoshitaishvili, Christopher Kruegel, and Giovanni

Vigna. Driller: Augmenting fuzzing through selective

symbolic execution. In Proceedings of the Network and

Distributed System Security Symposium (NDSS), 2016.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 89

[50] Yulei Sui and Jingling Xue. Svf: interprocedural static

value-flow analysis in llvm. In Proceedings of the 25th

international conference on compiler construction,

pages 265–266. ACM, 2016.

[51] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and

David Brumley. Scheduling black-box mutational

fuzzing. In Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security,

pages 511–522. ACM, 2013.

[52] G. Yan, J. Lu, Z. Shu, and Y. Kucuk. Exploitmeter:

Combining fuzzing with machine learning for automated

evaluation of software exploitability. In 2017 IEEE

Symposium on Privacy-Aware Computing (PAC), pages

164–175, Aug 2017.

[53] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang,

Xiangyu Zhang, XiaoFeng Wang, and Bin Liang. Pro-

fuzzer: On-the-fly input type probing for better zero-day

vulnerability discovery. In ProFuzzer: On-the-fly

Input Type Probing for Better Zero-Day Vulnerability

Discovery. IEEE.

[54] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and

Taesoo Kim. QSYM : A practical concolic execution

engine tailored for hybrid fuzzing. In Proceedings of

the 27th USENIX Conference on Security Symposium,

pages 745–761. USENIX Association, 2018.

[55] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan.

Send hardest problems my way: Probabilistic path

prioritization for hybrid fuzzing. In Proceedings of the

Network and Distributed System Security Symposium

(NDSS), 2019.

Appendix A Why use UBSAN

Note that although the design of MEUZZ is generically

compatible with mainstream sanitizers [15, 45, 48], our

implementation uses UBSan for the following reasons: (i)

UBSan instruments programs with pure static checks that can

be easily converted to solvable SMT constraints. In contrast,

other sanitizers, such as ASAN and MSAN, employ red-zones

and status bitmap, which are less amenable to constraint

solving. (ii) Our concolic engine is based on SAVIOR’s KLEE,

which uses UBSan as the primary sanitizer. Using UBSan

makes concolic execution more effective as shown in [25].

Appendix B Bugs found by MEUZZ

We provide a more detailed triage information of the bugs

found by MEUZZ. In total, MEUZZ found 30 undefined

behaviors, among which 21 have been confirmed/fixed so far

by the developers and the rest are pending. For the reported

bugs, we found the potential UBs with UBSAN [15] and

manual analysis; we found the memory errors and DoS with

ASAN [45] and memory leaks with LeakSAN [7].

Table 4: The table shows the discovered bugs by MEUZZ. UB, ME,

DoS, and ML refers to Undefined Behavior, Memory Error, Denial

of Service, and Memory Leak, respectively.

Program Potential UB ME DoS ML Confirmed

tcpdump 14 4

objdump 4 2

readelf 2 1 1 1

tiff2pdf 2 2

tiff2ps 1 4 1 4

jasper 4 2 4

djpeg 9 6

Total 30 5 7 5 21

1 for (; cc < tf_bytesperrow; cc += samplesperpixel)
{,→

2

3 adjust = 255 - cp[nc];
4 switch (nc) {
5 case 4: c = *cp++ + adjust; PUTHEX(c,fd);
6 case 3: c = *cp++ + adjust; PUTHEX(c,fd);
7 case 2: c = *cp++ + adjust; PUTHEX(c,fd);
8 case 1: c = *cp++ + adjust; PUTHEX(c,fd);
9 }

Figure 9: Off-by-one heap read overflow in tiff2ps.

One of the heap overflow vulnerabilities in tiff2ps is

discovered only by MEUZZ. Figure 9 shows the vulnerable

code snippet. This bug has been confirmed and fixed by the

developers. It is an out-of-bound read vulnerability that can

lead to information disclosure. The vulnerability takes place at

PSDataColorContig function where cp buffer with the size

of 4 bytes is allocated in heap and the 5th element of the buffer

is accessed by cp[4] which leads to out-of-bound read. To

trigger this bug, the loop needs to be executed without early

breaks. Moreover, to control the buffer size, the input needs to

satisfy many constraints in the TIFFScanlineSize function

so that it will return value 4. Based on the feature importance

of tiff2ps (Appendix D), Size, Cmp and External Call play

more important roles in its model, we believe this is why

MEUZZ is able to guide the fuzzer to explore and trigger this

bug. On the contrary, by replaying the fuzzing corpora, we

found that other fuzzers miss this bug because they either exit

the loop early or fail the checks in TIFFScanlineSize.

Appendix C Discussion on Extra Experiments

We attempted to compare MEUZZ with many state-of-the-art

fuzzing systems but cannot conduct an apple-to-apple

comparison with some of them due to various reasons.

Driller uses [3] as its concolic engine, which has limited

support for system calls, causing the engine’s failure to

generate new test cases. Similar issue was also reported by

Insu at el. [54]. Vuzzer and T-Fuzz do not have support for

concurrent fuzzing. After discussing with the developers we

assigned only one core to them and run them for 72 hours

90 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

(3×24) instead of 24 hours. We report the branch coverage

results of Vuzzer and T-Fuzz in Table 5.

Table 5: The table shows the number of branches covered by Vuzzer

and T-Fuzz. ✗ means fuzzer crashed on the program.

Program Vuzzer T-Fuzz

tcpdump 1103 11566

objdump 711 4216

readelf 1025 842

libxml2 715 ✗

tiff2pdf ✗ 4892

tiff2ps ✗ 3534

jasper ✗ 6084

djpeg 1317 763

Appendix D Detailed Feature Importance

Study

Figure 10 demonstrates how the randomly initialized model

evolved with more and more training data available during

fuzzing. MEUZZ automatically identifed which features are

more important for each specific programs, showing it is more

scalable than manually-written heuristics.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 91

RbL

UN

PL

NC

ICEC

RdL

Sz

Cmp

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35Initial Importance
Final Importance

(a) Feature importance in tcpdump

RbL

UN

PL

NC

ICEC

RdL

Sz

Cmp

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40Initial Importance
Final Importance

(b) Feature importance in objdump

RbL

UN

PL

NC

ICEC

RdL

Sz

Cmp

0.00

0.05

0.10

0.15

0.20

0.25

Initial Importance
Final Importance

(c) Feature importance in libxml

RbL

UN

PL

NC

ICEC

RdL

Sz

Cmp

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175Initial Importance
Final Importance

(d) Feature importance in tiff2pdf

RbL

UN

PL

NC

ICEC

RdL

Sz

Cmp

0.00

0.05

0.10

0.15

0.20

0.25Initial Importance
Final Importance

(e) Feature importance in tiff2ps

RbL

UN

PL

NC

ICEC

RdL

Sz

Cmp

0.0

0.1

0.2

0.3

0.4

0.5Initial Importance
Final Importance

(f) Feature importance in jasper

RbL

UN

PL

NC

ICEC

RdL

Sz

Cmp

0.00

0.05

0.10

0.15

0.20

0.25

Initial Importance
Final Importance

(g) Feature importance in readelf

RbL

UN

PL

NC

ICEC

RdL

Sz

Cmp

0.00

0.05

0.10

0.15

0.20

0.25
Initial Importance
Final Importance

(h) Feature importance in djpeg

Figure 10: Feature importance extracted from models learned in the effectiveness test (§ 6.2). The initial importances are randomly generated.

Sz: Size, RdL: Reached Label, EC: External Call, IC: Indirect Call, NC: New Coverage, PL: Path Length, UN: Undiscovered Neighbors, RbL:

Reachable Labels, Cmp: Comparisons.

92 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

	Introduction
	Motivation
	Background
	Hybrid Fuzzing
	Supervised Machine Learning

	System Design
	System Overview
	System Requirements
	Feature Engineering
	Seed Label Inference
	Model Construction and Prediction
	Updating Model

	Implementation
	Evaluation and Analysis
	Evaluation setup
	Learning Effectiveness
	Insights and Analyses
	Model Reusability
	Model Transferability
	Discovered Bugs

	Related Work
	ML for Fuzzing
	Seed Scheduling Heuristics

	Conclusion
	Why use UBSAN
	Bugs found by Meuzz
	Discussion on Extra Experiments
	Detailed Feature Importance Study

