
Where is the Weakest Link? A Study on
Security Discrepancies between Android Apps

and Their Website Counterparts

Arash Alavi1, Alan Quach1, Hang Zhang1, Bryan Marsh1, Farhan Ul Haq2,
Zhiyun Qian1, Long Lu2, and Rajiv Gupta1

1 University of California, Riverside
2 Stony Brook University

(aalav003,quacha,hzhan033,marshb,zhiyunq,gupta)@cs.ucr.edu

(fulhaq,long)@cs.stonybrook.edu

Abstract. As we move into the mobile era, many functionalities in stan-
dard web services are being re-implemented in mobile apps and services,
including many security-related functionalities. However, it has been ob-
served that security features that are standardized in the PC and web
space are often not implemented correctly by app developers resulting
in serious security vulnerabilities. For instance, prior work has shown
that the standard SSL/TLS certificate validation logic in browsers is
not implemented securely in mobile apps. In this paper, we study a
related question: given that many web services are offered both via
browsers/webpages and mobile apps, are there any discrepancies between
the security policies of the two?

To answer the above question, we perform a comprehensive study on
100 popular app-web pairs. Surprisingly, we find many discrepancies – we
observe that often the app security policies are much weaker than their
website counterparts. We find that one can perform unlimited number of
login attempts at a high rate (e.g., 600 requests per second) from a single
IP address by following the app protocol whereas the website counterpart
typically blocks such attempts. We also find that the cookies used in
mobile apps are generally more valuable as they do not expire as quickly
as the ones used for websites and they are often stored in plaintext
on mobile devices. In addition, we find that apps often do not update
the libraries they use and hence vulnerabilities are often left unpatched.
Through a study of 6400 popular apps, we identify 31 apps that use one
or more vulnerable (unpatched) libraries. We responsibly disclosed all
of our findings to the corresponding vendors and have received positive
acknowledgements from them. This result is a vivid demonstration of
“security is only as good as its weakest link”.

1 Introduction

Many web services are now delivered via mobile apps. Given that a large number
of services already exist and are offered as traditional websites, it is expected
that many apps are basically remakes or enhanced versions of their website



2

counterparts. Examples of these include mobile financial applications for major
banking corporations like Chase and Wells Fargo or shopping applications like
Amazon and Target. The software stack for the traditional web services has been
well developed and tested, including for both browsers and web servers. The
security features are also standardized (e.g., cookie management and SSL/TLS
certificate validation). However, as the web services are re-implemented as mobile
apps, many of the security features need to be re-implemented as well. This
can often lead to discrepancies between security policies of the websites and
mobile apps. As demonstrated in a recent study [9], when the standard feature
of SSL/TLS certificate validation logic in browsers is re-implemented on mobile
apps, serious flaws are present that can be exploited to launch MITM attacks.
Such an alarming phenomenon calls for a more comprehensive analysis of aspects
beyond the previous point studies.

In this paper, we examine a number of critical website security policies that
need to be re-implemented in mobile apps. We hypothesize that such security
policies in mobile apps are significantly weaker than those in traditional website
environment, due to the following observations: 1) mobile devices are much more
limited in terms of power and screen size; thus, many of the stringent security
features such as CAPTCHAs are likely to be relaxed; 2) many mobile apps are
newly developed and may naturally lack the maturity of web services that are
developed and tested for a much longer period of time.

To verify our hypothesis, we study the top 100 popular Android apps (each of
which has more than 5,000,000 installs) from various categories in Google play,
as well as their website counterparts, to perform a comprehensive study about
their security discrepancies. The contributions of the paper can be summarized
as follows:

• We identify a set of critical security policies that are commonly employed
by (app, web service) pairs. Since such pairs represent essentially the same
services, the discrepancy in security policies effectively lowers the security of
the overall service.

• For the authentication related security policies, we find significant differences
in the way their backend services handle login attempts (even when they are
essentially the same company, e.g., Expedia app vs. Expedia website). We
report 14 high-profile apps without any obvious security layer against failed
login attempts while their website counterparts do have security protections.
Thus these apps allow unlimited number of login attempts at a high rate that
can be used for dictionary attacks. We also find that in 8 apps, the discrepancy
allows one to perform an unlimited number of requests and learn whether a
user ID has been registered with the service.

• For the cookie management related security policies, we find that cookies
managed by mobile apps are generally 1) easier to steal as they are often
stored in plaintext and accessible in a number of ways; 2) more valuable to
steal as many of them do not expire any time soon; and 3) more usable by an
attacker as they can be used from almost any IP address in the world.



3

• For the use of libraries, we find 2 of the above 100 apps use vulnerable ver-
sions of libraries. By extending our study to 6400 apps, we find 31 potential
vulnerable apps due to their use of vulnerable libraries.

The rest of this paper is organized as follows. We first introduce the nec-
essary background information for the rest of the paper in section 2. Then we
discuss the methodology and implementation details in section 3. We describe
our observations for different tests that we have performed in section 4. Section
5 lists the related works and section 6 concludes the paper.

2 Background

In this section, we begin with the introduction to different authentication security
policies, and then we discuss the storage encryption methods that are used by
different browsers and in mobile apps. Finally, we give a brief overview of library
use in Android apps and how it differs from the browser scene.
Authentication Security Policies. We anticipate to see many different forms
of authentication security policies in place for both apps and websites. One of the
most common forms of authentication policies that can be seen are CAPTCHAs.
Others include a mandatory wait period or denial of access either to an account
or service. All three of these have potential to be IP/machine-based or global.

CAPTCHA. Though CAPTCHAs are designed with the purpose of defeat-
ing machines, prior research has shown that they can be defeated by machines
algorithmically [14] or via speech classification [18]. Due to the possibility of
CAPTCHA replay attacks, Open Web Application Security Project (OWASP)
recommends that CAPTCHA be only used in “rate limiting” applications due
to text-based CAPTCHAs being crackable within 1-15 seconds [16].

W aiting Time. A less common method of authentication policy is the usage
of waiting periods to limit the number of logins that can be attempted. The
response is in the form of an explicit message or disguised through a generic
“Error” message. Waiting periods, either for a single IP or for the user account
is a very effective method to slow down and mitigate aggressive online credential
guessing attacks. Depending on the implementation, it may operate on a group
of IPs (e.g., belonging to the same domain).

Denial of Access. An extreme policy is the denial of access, where an account
is essentially “locked” and additional steps are necessary to regain access (e.g.,
making a phone call) [19]). If an attacker knows the login ID of an account, then
he can lock the account by repeatedly failing the authentication. Though very
secure against online password guessing attacks, OWASP recommends that such
methods be used in high-profile applications where denial of access is preferable
to account compromises [15].
Storage Encryption Methods. Browsers on PCs by default encrypt critical
data for long term storage. In the case of Chrome on Windows, after a successful
login into a website, by clicking “Save Password”, the browser stores the pass-
word in encrypted form using the Windows login credential as the key. It is not
the same for mobile apps. For instance, the APIs for managing cookies do not
require the cookies to be encrypted.



4

Libraries. Mobile apps use libraries for different functionalities such as adver-
tisements, audio and video streaming, or social media. Previous studies [11,7,1]
have shown security and privacy issues that arise by use of some libraries which
can lead to leakage of sensitive user information, denial-of-service, or even arbi-
trary code execution. For services delivered through websites on the other hand,
no website-specific native libraries are loaded. Unlike libraries embedded in apps
that may be out-of-date and vulnerable, libraries used in browsers (e.g., flash)
are always kept up-to-date and free of known vulnerabilities.

3 Methodology and Implementation

In this section we describe our methodology and implementation details of our
approach to analyze app-web pairs. We selected the top 100 popular Android
apps (each of which has more than 5,000,000 installs) from popular categories
such as shopping, social, news, travel & local, etc. in Google play. All apps have a
corresponding website interface that offers a similar functionality. For each app-
web pair, we created legitimate accounts using default settings. This was done
to mimic the processes of an actual user interacting with an app or website.
Login Automation Analysis. We automate logins and logging for apps and
websites for the purposes of this study. For each app-web pair, we perform 101
login attempts automatically using randomly generated alphanumeric passwords
for the first 100 attempts followed by an attempt with the correct password. 100
attempts was chosen as this was an order of magnitude larger than what an
average user would perform within a span of 24 hours [6]. Allowing unlimited
number of login attempts is a security vulnerability because it allows an at-
tacker to perform brute force or dictionary attacks. Another security aspect of
login attempts is that if the system leaks the user ID (e.g., email) during the
login authentication checking, by returning error messages such as “wrong pass-
word” either in the UI or in the response message, then an attacker can send a
login request and learn whether a user ID has been registered with the service.
Therefore, we also compare the servers’ responses to login requests, either shown
in the UI or found in the response packet, for both apps and websites.
Sign up Automation Analysis. Besides login tests, we perform the sign up
tests that can also potentially leak if the username has been registered with
the service. Again, we simply need to compare the servers’ responses to sign up
requests for apps and websites. For both login and sign up security policies, if
a service where the website allows for only a limited number of logins/sign-ups
before a CAPTCHA is shown whereas the mobile app never prompts with a
CAPTCHA, an attacker would be inclined to launch an attack following the
mobile app’s protocol rather than the website’s. Test suites for the purposes of
testing mobile apps and websites were created using monkeyrunner and Sele-
nium Webdriver, respectively.
Authentication Throughput Analysis. From the login automation analysis,
we collect the set of app-web pairs where we find different behaviors between the
app and the website counterpart, we call this set “discrepancy list”. Using the
network traffic monitoring tools Fiddler and mitmproxy, we log network traffic
traces for all app-web pairs in the discrepancy list. Using the information in the



5

network traffic traces, we analyze how authentication packets are structured for
each client as well as finding what sort of information is being shared between a
client and server. This enables us to determine whether the app-web pair has the
same authentication protocol and share the same set of backend authentication
servers. In addition, this allows us to construct tools capable of sending login
request packets without actually running the mobile app, pushing for higher
throughput of authentication attempts. The tool also logs all responses received
from a server. To push the throughput even further, we can optionally paral-
lelize the login requests (from the same client) by targeting additional backend
authentication server IPs simultaneously. Our hypothesis is that the throughput
can be potentially multiplied if we target multiple servers simultaneously.
IP-Changing Clients Analysis. Using VPN Gate and a sequence of 12 IP
addresses from different geographical locations, including 3 from North Amer-
ica and 9 from other countries, we test the apps and websites regarding their
response to accounts being logged in from multiple locations separated by hun-
dreds of miles in a short span of time. The motivation of this analysis was to
determine whether app/website has a security policy against IP changes can
indicate session hijacks [8]. If not, then an attacker can use the hijacked cookies
anywhere without being recognized by the web service. For example an attacker
can use a stolen cookie from an app with any IP address to obtain personal
and/or financial information pertaining to the user account.
Cookie Analysis. For each app-web pair, we analyze the cookies that are saved
on the phone/PC. We collect all the cookies and analyze cookie storage security
policies to find whether they are stored in plaintext and more easily accessible.
We also perform expiration date comparison testing on 18 shopping app-web
pairs from our list of app-web pairs. The hypothesis is that mobile apps run on
small screens and it is troublesome to repeatedly login through the small soft-
ware keyboard; therefore the corresponding app’s servers will likely have a more
lenient policy allowing the cookies to stay functional for longer time periods.
Vulnerable Library Analysis. While both apps and websites execute client-
side code, app code has access to many more resources and sensitive function-
alities compared to their website counterpart, e.g., apps can read SMS on the
device while javascript code executed through the browser cannot. Therefore,
we consider the app code more dangerous. Specifically, vulnerable app libraries
running on the client-side can cause serious attacks ranging from denial of ser-
vice (app crash) to arbitrary code execution. Because of this, for each app, we
identify if it uses any vulnerable libraries. We conduct the analysis beyond the
original 100 apps to 6400 apps in popular categories. Ideally the libraries should
be tagged with versions; unfortunately, we discover that most libraries embed-
ded in Android apps do not contain the version information as part of their
metadata. Therefore, in the absence of direct version information, we perform
the following steps instead. First, we search the extracted libraries through the
CVE database. If there is any library that is reported to have vulnerabilities,
we perform two tests to conservatively flag them as vulnerable. First is a sim-
ple time test: we check if the last update time of the app is before the release



6

time of patched library. Obviously, if the app is not updated after the patched
library is released, then the app must contain a vulnerable library. If the time
test cannot assert that the library is vulnerable, we perform an additional test on
the symbols declared in the library files. Specifically, if there is a change (either
adding or removing a function) in the patched library, and the change is lacking
in the library file in question, then we consider it vulnerable. Otherwise, to be
conservative, we do not consider the library as vulnerable.

4 Observations
We present our results obtained from following the methodology outlined earlier.
Security Policies Against Failed Login and Sign up Attempts. By per-

forming login attempts automatically for each pair of app and website, many
interesting discrepancies in security policies have been found. Figure 1 summa-
rizes the main results for all 100 pairs, considering their latest versions at the
time of experiment. In general, we see that the security policy is weaker on the
app side. There are more apps without security policies than websites. We also
see that there are significantly fewer apps asking for CAPTCHA, presumably
due to the concern about usability of the small keyboards that users have to
interact with. Interestingly, in the case when CAPTCHAs are used both by app
and website, the CAPTCHA shown to app users is usually simpler in terms of
the number of characters and symbols. For instance, LinkedIn website asks the
user to enter a CAPTCHA with 2 words while its app CAPTCHA only has 3
characters. Unfortunately, an attacker knowing the difference can always imper-
sonate the mobile client and attack the weaker security policy. We also observe
that more apps employ IP block policies for a short period of time. This is effec-
tive against naive online credential guessing attacks that are not operated by real
players in the underground market. In reality, attackers are likely operating on
a large botnet attempting to perform such attacks, rendering the defense much
less effective than it seems. In fact, if the attackers are aware of the discrepancy,
they could very well be impersonating the mobile client to bypass stronger pro-
tections such as CAPTCHA (which sometimes requires humans to solve and is
considered additional cost to operate cyber crime).

8

19

11
8

54

25

19

9

3

44

0

10

20

30

40

50

60

Captcha Waiting Time Denial of
Access

IP Block No Security
Layer

N
um

be
r 

of
 A

pp
s/

W
eb

s Apps Webs

Fig. 1. Security policies against failed login attempts in apps vs. websites (TODO:
replace this figure with apps of older versions



7

Table 1 lists app-web pairs in detail where apps operate without any secu-
rity protections whatsoever, at least for the version when we began our study
but their websites have some security policies. In total, we find 14 such app-
web pairs; 8 apps have subsequently strengthened the policy after we notified
them. There are however still 6 that are vulnerable to date. We also provide a
detailed list of all 100 app-web pairs on our project website [2]. To ensure that
there is indeed no security protection for these apps, we perform some follow-up
tests against the 14 applications and confirm that we could indeed reach up to
thousands of attempts (without hitting any limit). Note that our approach en-
sures that no hidden security policy goes unnoticed (such as the account being
silently blocked), as our test always concludes with a successful login attempt
using the correct password, indicating that it has not been blocked due to the
failed attempts earlier. In the table, we also list the URLs that correspond to the
login requests. Since both the domain names and resolved IP addresses (which
we did not list) are different, it is a good indication that apps and websites go
through different backend services to perform authentications, and hence there
are different security policies.

App-Web App Security Layer
(App Verrsion)

Website
Security
Layer

App Host Website Host

Babbel
None(5.4.072011)

Account lock(5.6.060612)
Account lock www.babbel.com/api2/login accounts.babbel.com/en/

accounts/sign in

Ebay None(3.0.0.19)

IP block(5.3.0.11)
Captcha mobiuas.ebay.com/servicesmobile

/v1/UserAuthenticationService
signin.ebay.com/ws/eBayISAPI.dll

Expedia None(5.0.2) Captcha www.expedia.com/api/user/signin www.expedia.com/user/login

Hotels.com
None(12.1.1.1)

IP block(20.1.1.2)
Captcha ssl.hotels.com/device/signin.html ssl.hotels.com/profile/signin.html

LivingSocial None(3.0.2)

IP block(4.4.2)
Wait time

accounts.livingsocial.com/v1/oauth

/authenticate

accounts.livingsocial.com

/accounts/authenticate

OverDrive None(3.5.6) Captcha overdrive.com/account/sign-in www.overdrive.com/account

/sign-in

Plex
None(4.6.3.383)

IP block(4.31.2.310)
IP block plex.tv/users/sign in.xml plex.tv/users/sign in

Quizlet None(2.3.3) Wait time api.quizlet.com/3.0/directlogin quizlet.com/login

Skype None(7.16.0.507)
Wait time
& Captcha uic.login.skype.com/login/skypetoken login.skype.com/login

SoundCloud
None(15.0.15)

IP block(2016.08.31-release)
Captcha api.soundcloud.com/oauth2/token sign-in.soundcloud.com/

sign-in/password

TripAdvisor None(11.4)

IP block(17.2.2)
Captcha api.tripadvisor.com/api/internal/1.5/

auth/login

www.tripadvisor.com

/Registration

Twitch
None(4.3.2)

Captcha(4.11.1)
Captcha api.twitch.tv/kraken/oauth2/login

passport.twitch.tv/authorize

We Heart It None(6.0.0) Captcha api.weheartit.com/oauth/token weheartit.com/login/authenticate

Zappos None(5.1.2) Captcha api.zappos.com/oauth/access token
secure-www.zappos.com

/authenticate

Table 1. Discrepancy of authentication policies among app-web pairs. In all cases, the
above apps have no security policy while their website counterparts do have security
policies. This allows attackers to follow the app protocol and gain unlimited number
of continuous login attempts (confirmed with 1000+ trials). A subset of them (8) have
subsequently patched the security flaw after our notifications.

Impact of online credential guessing attacks. To perform online password
guessing attacks, one can either perform a brute force or dictionary attack against



8

those possibilities that are deemed most likely to succeed. As an example, the
recent leakage of passwords from Yahoo [4] consisting of 200 million entries
(without removing duplicates). According to our throughput result, at 600 login
attempts per second (which we were able to achieve against some services),
one can try every password in less than 4 days against a targeted account (if we
eliminate duplicate passwords the number will be much smaller). Let us consider
an attacker who chooses the most popular and unique 1 million passwords; it will
take less than half an hour to try all of them. Note that this is measured from
a single malicious client, greatly lowering the requirement of online password
guessing attacks, which usually are carried out using botnets. Another type of
attack which can be launched is Denial of Service (DoS) attack. By locking large
amount of accounts through repeated logins, attackers could deny a user’s access
to a service. As we mentioned earlier, we find more apps than websites which
have the account lock security policy against the failed authentication (11 apps
vs. 9 websites). Account lock security policy is a double edge sword: while it
provides security against unauthorized login attempts, it also allows an attacker
to maliciously lock legitimate accounts with relative ease. The result shows that
this kind of attack can be more easily launched on the app side. We verify this
claim against our own account and confirm that we are unable to login with the
correct password even if the login is done from a different IP address.

To perform online account-ID/username guessing attacks, we report the re-
sult of the sign up (registration) security policy testing, which aligns with the
login results. We find 5 app-web pairs — 8tracks, Lovoo, Newegg, Overdrive,
StumbleUpon — where the app has no security protection against flooded sign
up requests while the website has some security protection such as CAPTCHA.
We also find that 14 websites leak the user email address during the authentica-
tion checking by returning error messages such as “wrong password”. In contrast,
17 apps leak such information. The three apps with weaker security policies are
AMC Theaters, Babbel, and We Heart It. The discrepancy allows one to learn
whether a user ID (e.g., email) has been registered with the service by perform-
ing unlimited registration requests. Combined with the password guessing, an
attacker can then also attempt to test a large number of username and password
combinations.
Throughput Measurement. In throughput testing, we tested authentications-
per-second (ApS) that are possible from a single desktop computer. Table 2
shows the throughput results for login testing. An interesting case was Expedia,
which allowed ∼150 ApS when communicating with a single server IP and up-
wards of ∼600 ApS when using multiple server IPs during testing. The existence
of multiple server IPs, either directly from the backend servers or CDN, played
a role in the amplification of an attack. It is interesting to note that in the case
of Expedia, different CDN IPs do not in fact allow amplification attacks. We
hypothesize that it is due to the fact that these CDNs still need to access the
same set of backend servers which are the real bottleneck. To identify backend
server IPs, we perform a step we call “domain name scanning” and successfully
locate a non-CDN IP for “ftp.expedia.com”. From this IP, we further scan the



9

App ApS (Single-server-IP) ApS (Multi-server-IP) # of IPs found CDN/Host

Ebay ∼ 77 ∼100 2 Ebay

Expedia ∼150 ∼600 20 Akamai/Expedia

SoundCloud ∼77 ∼178 2 EdgeCast

We Heart It ∼83 ∼215 5 SoftLayer/ThePlanet.com

Zappos ∼84 ∼188 20 Akamai

Table 2. Throughput results for login testing.

App-Web App Cookies Expiration Time Website Cookies Expiration Time

AliExpress several months 60 minutes

Amazon several months 14 minutes

Best Buy several months 10 minutes

Kohl’s several months 20 minutes

Newegg several months 60 minutes

Walmart several months 30 minutes

Table 3. Cookies expiration time.

subnet and find 19 other IPs capable of performing authentication. By talking
to these IPs directly, we are able to improve the throughput from 150 to 600.

Finally, we also obtain throughput results for 4 of the applications in sign up
testing and their average throughput is around 90 to 240 ApS.
Client IP Changing. During IP address testing, we find that 11 app-web pairs
have client IP changing detection and associated security policy on the server
side. The remaining 89 app-web pairs have no visible security policy. Among
them there are 8 app-web pairs for which both the app and the website have
the same behavior against IP changing. For the remaining 3 pairs, — Target,
Twitch, Steam — the app and website have different behaviors where the website
returns an access denied error for some IP address changes (in the case of Target
and Twitch) or forces a logout for any change of the IP address (in the case of
Steam) but the app allows changing client IP address frequently.

One main consequence is that when an app/website has no security pol-
icy against IP changing, an attacker can perform HTTP session hijacking with
stolen cookies more easily without worrying about what hosts and IP addresses
to use in hijacking. For instance, Steam is a gaming client; it does have secu-
rity protection in its websites. When a cookie is sent from a different IP, the
website immediately invalidates the cookie and forces a logout. However, using
the Steam app and the associated server interface, if the attacker can steal the
cookie, he can impersonate the user from anywhere (i.e., any IP address).
Cookies. Cookies are commonly used for web services as well as mobile apps.

In browsers, cookie management has evolved over the past few decades and grad-
ually become more standardized and secure. However, on the mobile platform
every app has the flexibility to choose or implement its own cookie management,
i.e. cookie management is still far from being standardized.

We observe that many apps store their cookies unencrypted (47 apps among
all 100 apps). An attacker can access the cookie more easily as compared to
browsers on PCs. First, smartphones are smaller and more likely to be lost or
stolen. Therefore, a simple dump of the storage can reveal the cookies (assuming
no full-disk encryption). In contrast, in the case of browsers on PCs, cookies



10

are often encrypted with secrets unknown to the attacker even if the attacker
can gain physical access to the device. For instance, Windows password (used
in Chrome) and master password (used in Firefox) are used to encrypt the
cookies [20]. Second, if the device is connected to an infected PC (with adb
shell enabled), any unprivileged malware on PC may be able to pull data from
the phone. For instance, if the app is debuggable then with the help of run-as
command, one can access the app data such as cookies. Even if the app is not
debuggable, the app data can still be pulled from the device into a file with
.ab(android backup) format [12].

We also report another type of important discrepancy — cookie expiration
time. Here we focus on 18 shopping app-web pairs (a subset from the list of
100 pairs). We observe that app cookies remain valid for much longer time than
web cookies. The cookie expiration time in all 18 shopping websites is around
3 hours on average, whereas it is several months in their app counterparts. The
result is shown in Table 3. We find that 6 apps have cookie expiration time set
to at least 1 month while their websites allow only minutes before the cookies
expire. An attacker can easily use a stolen cookie for these apps and perform
unwanted behavior such as making purchases as the cookie is not expired. For
instance, based on our personal experience, Amazon app appears to use cookies
that never expire to give the best possible user experience. We confirmed that a
user can make purchases after 1 year since the initial login in.
Vulnerable Libraries. During vulnerable library testing, we find two apps
(Vine and Victoria’s Secret) use unpatched and vulnerable libraries from FFm-
peg [3] framework, which motivates us to look at a larger sample of 6,400 top
free apps in different categories. Table 4 summarizes our observation for vul-
nerable libraries with the number of apps using them. For example, an attacker
can cause a DoS (crash the application) or possibly execute arbitrary code by
supplying a crafted ZIP archive to an application using a vulnerable version of
libzip library [5]. As we discussed before, javascript vulnerabilities are unlikely
to cause damage to the device compared to app libraries, especially given the
recent defences implemented on WebView [10].

Library Vulnerabilities # of Apps Example Vulnerable Apps(Version)(# of Installs)

libzip
DoS or possibly execute arbitrary code

via a ZIP archive 13
com.djinnworks.StickmanBasketball(1.6)(over 10,000,000)

com.djinnworks.RopeFly.lite(3.4)(over 10,000,000)

FFmpeg * DoS or possibly have unspecified other impact 9
co.vine.android(5.14.0)(over 50,000,000)

com.victoriassecret.vsaa(2.5.2)(over 1,000,000)

libxml2

DoS via a crafted XML document 8
com.avidionmedia.iGunHD(5.22)(over 10,000,000)

com.pazugames.girlshairsalon(2.0)(over 1,000,000)

Obtain sensitive information 5 com.pazugames.girlshairsalon(2.0)(over 1,000,000)

com.flexymind.pclicker(1.0.5)(over 100,000)

com.pazugames.cakeshopnew(1.0)(over 100,000)

DoS or obtain sensitive information
via crafted XML data 5

DoS via crafted XML data 5

libcurl Authenticate as other users via a request 1 sv.com.tigo.tigosports(6.0123)(over 10,000)

Table 4. Vulnerable libraries used by apps.
* FFmpeg includes 7 libraries:

libavutil, libavcodec, libavformat, libavdevice, libavfilter, libswscale, and libswresample.



11

5 Related Work

As far we know, there are no in depth studies that explicitly analyze the similar-
ities and differences between mobile applications and their website counterparts
in terms of security. Fahl et al. [9] understood the potential security threats
posed by benign Android apps that use the SSL/TLS protocols to protect data
they transmit. Leung et al. [13] recently studied 50 popular apps manually to
compare the Personally Identifiable Information (PII) exposed by mobile apps
and mobile web browsers. They conclude that apps tend to leak more PII (but
not always) compared to their website counterparts, as apps can request access
to more types of PII stored on the device. This is a demonstration of the dis-
crepancy of privacy policies between apps and websites. In contrast, our work
focuses on the discrepancy of security (not so much privacy) policies between
apps and websites. Zuo et al. [21] automatically forged cryptographically con-
sistent messages from the client side to test whether the server side of an app
lacks sufficient security layers. They applied their techniques to test the server
side implementation of 76 popular mobile apps with 20 login attempts each and
conclude that many of them are vulnerable to password brute-forcing attacks,
leaked password probing attacks, and Facebook access token hijacking attacks.
Sivakorn et al. [17] recently conducted an in-depth study on the privacy threats
that users face when attackers have hijacked a user’s HTTP cookie. They evalu-
ated the extent of cookie hijacking for browser security mechanisms, extensions,
mobile apps, and search bars. They observed that both Android and iOS plat-
forms have official apps that use unencrypted connections. For example, they
find that 3 out of 4 iOS Yahoo apps leak users’ cookies.

6 Conclusion

In this paper, we identify serious security related discrepancies between android
apps and their corresponding website counterparts. We responsibly disclosed all
of our findings to the corresponding companies including Expedia who acknowl-
edged and subsequently fixed the problem. The lesson learnt is that, for the
same web service (e.g., Expedia), even though their websites are generally built
with good security measures, the mobile app counterparts often have weaker or
non-existent security measures. As a result, the security of the overall service is
only as good as the weakest link — more often than not, the mobile apps.

7 Acknowledgments
We would like to thank our shepherd Kanchana Thilakarathna for his feedback
in revising the paper. This work is supported by NSF grant CNS-1617424 to UC
Riverside.

References

1. The Hacker News. Warning: 18,000 android apps contains code that spy on
your text messages. http://thehackernews.com/2015/10/android-apps-steal-
sms.html, Retrieved on 10/11/2016.

2. Authentication Policy Table. http://www.cs.ucr.edu/~aalav003/authtable.html,
Retrieved on 10/11/2016.

http://thehackernews.com/2015/10/android-apps-steal-sms.html
http://thehackernews.com/2015/10/android-apps-steal-sms.html
http://www.cs.ucr.edu/~aalav003/authtable.html


12

3. FFmpeg. https://ffmpeg.org/, Retrieved on 10/11/2016.
4. Hacker Selling 200 Million Yahoo Accounts On Dark Web. http:

//thehackernews.com/2016/08/hack-yahoo-account.html, Retrieved on
10/11/2016.

5. Red Hat Bugzilla Bug 1204676. https://bugzilla.redhat.com/show bug.cgi?id=
CVE-2015-2331, Retrieved on 10/11/2016.

6. Amber. Some Best Practices for Web App Authentication. http:

//codingkilledthecat.wordpress.com/2012/09/04/some-best-practices-
for-web-app-authentication/, Retrieved on 10/11/2016.

7. T. Book, A. Pridgen, and D. S. Wallach. Longitudinal analysis of android ad
library permissions. CoRR, abs/1303.0857, 2013.

8. P. De Ryck, L. Desmet, F. Piessens, and W. Joosen. Secsess: Keeping your session
tucked away in your browser. In Proceedings of the 30th Annual ACM Symposium
on Applied Computing, SAC ’15, 2015.

9. S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith.
Why eve and mallory love android: An analysis of android ssl (in)security. In ACM
CCS, 2012.

10. M. Georgiev, S. Jana, and V. Shmatikov. Breaking and Fixing Origin-Based Access
Control in Hybrid Web/Mobile Application Frameworks . In 2014 Network and
Distributed System Security (NDSS ’14), San Diego, February 2014.

11. M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure analysis of
mobile in-app advertisements. In WiSeC, 2012.

12. S. Hwang, S. Lee, Y. Kim, and S. Ryu. Bittersweet adb: Attacks and defenses. In
Proceedings of the 10th ACM Symposium on Information, Computer and Commu-
nications Security, ASIA CCS ’15, 2015.

13. C. Leung, J. Ren, D. Choffnes, and C. Wilson. Should you use the app for that?:
Comparing the privacy implications of app- and web-based online services. In
Proceedings of the 2016 ACM on Internet Measurement Conference, IMC ’16, pages
365–372, New York, NY, USA, 2016. ACM.

14. G. Mori and J. Malik. Recognizing objects in adversarial clutter: Breaking a
visual captcha. In Proceedings of the 2003 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2003.

15. OWASP. Blocking Brute Force Attacks. http://www.owasp.org/index.php/
Blocking Brute Force Attacks, Retrieved on 10/11/2016.

16. OWASP. Testing for Captcha (OWASP-AT-012). http://www.owasp.org/
index.php/Testing for Captcha (OWASP-AT-012), Retrieved on 10/11/2016.

17. S. Sivakorn, I. Polakis, and A. D. Keromyti. The cracked cookie jar: Http cookie
hijacking and the exposure of private information. In Proceedings of the 2016 IEEE
Symposium on Security and Privacy, 2016. IEEE, 2016.

18. J. Tam, J. Simsa, S. Hyde, and L. V. Ahn. Breaking audio captchas. In D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information
Processing Systems 21, pages 1625–1632. 2008.

19. T. Wolverton. Hackers find new way to milk ebay users. In Proceedings of the 1998
Network and Distributed System Security Symposium, 2002.

20. J. Wright. How Browsers Store Your Passwords (and Why You Shouldn’t Let
Them). http://raidersec.blogspot.com/2013/06/how-browsers-store-your-
passwords-and.html/, Retrieved on 10/11/2016.

21. C. Zuo, W. Wang, R. Wang, and Z. Lin. Automatic forgery of cryptographically
consistent messages to identify security vulnerabilities in mobile services. In NDSS,
2016.

https://ffmpeg.org/
http://thehackernews.com/2016/08/hack-yahoo-account.html
http://thehackernews.com/2016/08/hack-yahoo-account.html
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2015-2331
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2015-2331
http://codingkilledthecat.wordpress.com/2012/09/04/some-best-practices-for-web-app-authentication/
http://codingkilledthecat.wordpress.com/2012/09/04/some-best-practices-for-web-app-authentication/
http://codingkilledthecat.wordpress.com/2012/09/04/some-best-practices-for-web-app-authentication/
http://www.owasp.org/index.php/Blocking_Brute_Force_Attacks
http://www.owasp.org/index.php/Blocking_Brute_Force_Attacks
http://www.owasp.org/index.php/Testing_for_Captcha_(OWASP-AT-012)
http://www.owasp.org/index.php/Testing_for_Captcha_(OWASP-AT-012)
http://raidersec.blogspot.com/2013/06/how-browsers-store-your-passwords-and.html/
http://raidersec.blogspot.com/2013/06/how-browsers-store-your-passwords-and.html/

	Where is the Weakest Link? A Study on Security Discrepancies between Android Apps and Their Website Counterparts
	Introduction
	Background
	Methodology and Implementation
	Observations
	Related Work
	Conclusion
	Acknowledgments


