
PTAuth: Temporal Memory Safety via Robust Points-to Authentication

Reza Mirzazade Farkhani
Northeastern University

mirzazadefarkhani.r@northeastern.edu

Mansour Ahmadi
Northeastern University
Mansosec@gmail.com

Long Lu
Northeastern University
l.lu@northeastern.edu

Abstract
Temporal memory corruptions are commonly exploited

software vulnerabilities that can lead to powerful attacks. De-
spite significant progress made by decades of research on
mitigation techniques, existing countermeasures fall short due
to either limited coverage or overly high overhead. Further-
more, they require external mechanisms (e.g., spatial memory
safety) to protect their metadata. Otherwise, their protection
can be bypassed or disabled.

To address these limitations, we present robust points-to
authentication, a novel runtime scheme for detecting all kinds
of temporal memory corruptions. We built a prototype system,
called PTAuth, that realizes this scheme on ARM architec-
tures. PTAuth contains a customized compiler for code anal-
ysis and instrumentation and a runtime library for perform-
ing the points-to authentication as a protected program runs.
PTAuth leverages the Pointer Authentication Code (PAC) fea-
ture, provided by the ARMv8.3 and later CPUs, which serves
as a simple hardware-based encryption primitive. PTAuth uses
minimal in-memory metadata and protects its metadata with-
out requiring spatial memory safety. We report our evaluation
of PTAuth in terms of security, robustness and performance
using 150 vulnerable programs from Juliet test suite and the
SPEC CPU2006 benchmarks. PTAuth detects all three cate-
gories of heap-based temporal memory corruptions, generates
zero false alerts, and slows down program execution by 26%
(this number was measured based on software-emulated PAC;
it is expected to decrease to 20% when using hardware-based
PAC). We also show that PTAuth incurs 2% memory overhead
thanks to the efficient use of metadata.

1 Introduction

Memory corruptions remain to be the most commonly
exploited software vulnerabilities, despite the significant
progress made by decades of research on mitigation tech-
niques. Memory corruptions are caused by programming er-
rors (or bugs) that break the type constraints of data in mem-
ory. They serve as the stepping stone for launching almost all

types of software attacks, from simple stack smashing to heap
spray and to more advanced return-oriented programming
(ROP) and code reuse attacks. Generally, memory corruptions
exist in two different forms: spatial or temporal. The former
happens when data’s spatial boundary is breached. The latter
is due to data being used out of its life span.

Temporal memory corruptions may seem less harmful than
spatial corruptions. However, they are being increasingly ex-
ploited to bypass the state of the art defenses against spa-
tial corruptions or control flow manipulations. Use-after-free
(UAF) is the most common type of temporal memory cor-
ruption. A recent analysis on the Chromium project shows
that 50% of the serious memory safety bugs are UAF is-
sues [28]. To exploit a UAF, an attacker first plants crafted
objects in place of expired/freed objects and then waits for the
vulnerable program to access the planted objects, and in turn,
unknowingly invoke code specified by the attacker. Double-
free and invalid-free are two other types of temporal memory
corruptions [49] that can provide arbitrary write primitives
for attackers.

To counter the powerful and stealthy attacks enabled by
temporal memory corruptions, many mitigation or prevention
techniques were proposed recently. One approach adopted
by these works [37, 44, 58, 62, 65] aims to disable dangling
pointers, without which UAF and its variants cannot occur.
Though effective, these techniques are either too heavy for
real-world deployment [44, 65] or limited in their scope of
protection. For instance, DangNull [44] can only protect those
pointers that reside on the heap. Techniques solely focusing on
preventing dangling pointers, such as Oscar [37], are unable
to prevent invalid-free vulnerabilities.

Another line of works on preventing temporal memory cor-
ruptions monitors every pointer dereference during runtime
and ensures that the to-be-dereferenced pointer indeed points
to the expected object (or type) [35, 47, 49]. These techniques
are, in principle, more comprehensive than dangling pointer
prevention. However, they tend to incur heavier runtime over-
head.

Despite the approaches, the aforementioned techniques all



require spatial memory safety to protect their in-memory meta-
data, whose integrity is critical for the runtime monitoring.
This common requirement underlines two limitations of these
techniques. First, without external protection, they themselves
are not robust against attacks or evasions. Second, requiring
spatial safety can significantly increase the already high run-
time overhead. Furthermore, many of the existing mitigations
against temporal memory corruption, including [44, 62, 65],
store a considerable amount of metadata in memory, increas-
ing the memory footprint by as much as 2 times.

Motivated by the limitations of previous works (esp. lim-
ited coverage, the requirement of external protection, and high
overhead), we present PTAuth, a novel system for dynamically
detecting temporal memory corruptions in user-space pro-
grams. PTAuth follows the approach of runtime dereference
checking. Unlike previous works, PTAuth has built-in protec-
tion of its in-memory metadata and thus obviates the need
for external mechanisms to provide spatial memory safety.
Moreover, PTAuth uses a checking scheme that minimizes
metadata size and optimizes metadata placement for better
compatibility and handling of data and pointer propagation.

Specifically, during the allocation of every heap object,
PTAuth assigns a unique ID to the object and computes a
cryptographic authentication code (AC) based on the object
ID and the base address of the object. PTAuth stores the ID
to the beginning of the object. It stores the AC to the unused
bits of the pointer to the object. As a result, the pointer is
“tied to” the object (or the pointee) at the particular location
in memory. This points-to relationship can be verified during
every pointer dereference by re-computing the AC. An AC
mismatch indicates a temporal memory safety violation.

The in-memory metadata of PTAuth include AC for pointers
and IDs for objects. Obviously, the robustness of the runtime
checks hinges on the integrity of the metadata. PTAuth can
detect corrupted or invalid metadata without requiring any
form of spatial memory safety, thanks to the design of AC. By
using a secret key for computing and verifying AC, PTAuth
prevents attackers from forging or tampering with metadata.
We prototyped PTAuth for the latest ARM architecture and
employ PAC (pointer authentication code) [16], a hardware-
based feature, to implement AC. PAC was originally designed
for checking the integrity of protected pointers and has been
enabled on the latest iOS devices [23]. We repurposed this
hardware feature for performing secure encryption (i.e., cal-
culating AC) and storing AC in unused bits of pointers.

The in-pointer storage of AC offers two benefits. First, stor-
ing AC does not consume additional memory space. Second,
an AC is propagated automatically when the pointer is copied
or moved, without requiring handling or tracking by PTAuth.
An object ID is 8-byte long and is stored at the beginning of
the object. This distributed placement of object IDs, as op-
posed to centralized storage, makes the runtime check faster.

In summary, we made the following contributions:

• We designed a novel scheme for dynamically detecting
temporal memory corruptions, which overcomes the lim-
itations of previous works and achieves minimal meta-
data, full coverage, and built-in security against attacks
and metadata tempering.

• We built a system for ARM platforms that utilizes PAC
to implement the detection scheme in an efficient and
secure way.

• We evaluated the prototype using standard benchmarks
and compared it with the state-of-the-art temporal cor-
ruption detectors, confirming the advantages of our ap-
proach.

2 Background

2.1 Exploiting Temporal Memory Bugs

Use-after-free: If a program reuses a pointer after the corre-
sponding buffer had been freed, attackers may plant a crafted
object in the same memory location, after the free and before
the use, to trick the program into using the crafted object and
consequently perform attacker-specified actions. According
to recent reports [36, 44], UAF now counts for a majority of
software attacks, especially on browsers, mostly because the
deployed attack mitigations are unable to detect them. More-
over, most of the recent Android rooting and iOS jailbreaking
exploits use UAF as a key part of their attack flows [13].
Double-free: Double-free is a special case of UAF, which
occurs when a pointer is freed twice or more. This leads to
undefined behaviors [8] and can be exploited to construct
arbitrary memory write primitives, with which an attacker
can corrupt sensitive information such as code pointers and
execute arbitrary code.
Invalid-free: Invalid-free occurs when freeing a pointer that
is not pointing to the beginning of an object or a heap object
at all (i.e., freeing a pointer that was not returned by an allo-
cator) [8, 49]. Similar to double-free, invalid-free may allow
attackers to gain arbitrary memory overwrite abilities. The
idea of House of Spirit [54] exploitation technique is partly
based on exploiting invalid-free errors.

2.2 Pointer Authentication Code on ARMv8
Pointer Authentication Code, or PAC, is a new hardware fea-
ture available on ARMv8.3-A and later ARM Cortex-A ar-
chitectures [10]. PAC is designed for checking the integrity
of critical pointers. Compilers or programmers use the cor-
responding PAC instructions to (1) generate signatures for
selected pointers, and (2) verify signatures before signed point-
ers are used. For instance, in a typical use case of PAC, com-
pilers insert to programs the PAC instructions that, during
runtime, sign each return address (i.e., a special code pointer)



before saving it and check the signature before every function
return. PAC is designed to detect unexpected or malicious
overwrites of pointers. It has been deployed and enabled on
the latest iOS devices [23].

PAC generates pointer signatures, or authentication codes,
using QARMA [30], a family of lightweight block ciphers.
QARMA takes two 64-bit inputs (one pointer and one context
value), encrypts the inputs with a 128-bit key, and outputs a
64-bit signature. A context value is chosen by the programmer
or compiler for each pointer. A total of five keys can be set
by the OS (i.e., code running at EL1) for encrypting/signing
different kinds of pointers. Signatures are truncated and stored
in the unused bits of signed pointers (i.e., depending on the
virtual address space configuration, 11 to 31 bits in a 64-bit
pointer could be unused).

Very recently, ARM announced ARMv8.6-A [25], which
introduced some enhancements to PAC. In ARMv8.3, when a
pointer authentication process fails, the top bits of the invalid
pointer is changed to 0x20, which makes the pointer invalid
to use. In contrast, in ARMv8.6, an exception is thrown when
a pointer authentication fails, which prevents an attacker to
brute-force the correct signature. Another improvement in
ARMv8.6 is that a signature is XORed with the upper bits of
the pointer, which help mitigate signature reuse attacks. At the
time of writing this paper, no publicly available hardware or
simulator supports ARMv8.6. Our design and implementation
of PTAuth are based on ARMv8.3. We discuss in §3.5 how
our design can be made compatible with ARMv8.6.

Table 1 lists a subset of PAC instructions. Each instruc-
tion serves one purpose (signing or authentication), targets
one type of pointers (code or data), and uses one of the five
keys (i.e., two keys for each pointer type plus a generic key).
Differentiating pointer types and having multiple keys help
reduce the chance of pointer substitution or reuse attacks. The
bottom two instructions in Table 1 are special. PACGA is not
specific to pointer authentication and can be used as a data en-
cryption instruction on small data objects (16 bytes at most).
It uses the generic key and outputs a 32-bit cipher to the upper
half of a general-purpose register. XPAC removes the signature
from a signed pointer without any authentication. Therefore,
it does not use any key. PAC is designed for fast and robust
checking of pointer integrity. The signing and authentication
are performed directly by the CPU without any software-level
assistance. The keys are stored in the special CPU registers,
which are accessible only to OS or EL1 code and not visible
to user-level code.

PAC was originally designed for checking the integrity
of pointers and has been mostly used for protecting code
pointers. We use PAC as a simple hardware-based primitive
for efficiently and securely computing AC. The AC is computed
and verified based on our novel scheme designed for detecting
temporal memory corruptions. Compared with PAC, PTAuth
achieves a security goal (i.e., enforcing temporal memory
safety) that is orthogonal to, and broader than, the original

Instruction Key Used Pointer Type Purpose
PACIAx Code.A Code Signing
PACIBx Code.B Code Signing
PACDAx Data.A Data Signing
PACDBx Data.B Data Signing
AUTIAx Code.A Code Authentication
AUTIBx Code.B Code Authentication
AUTDAx Data.A Data Authentication
AUTDBx Data.B Data Authentication
PACGA Generic Generic General
XPAC - - Sig. stripping

Table 1: PAC-related instructions.

purpose of PAC (i.e., checking pointer value integrity). The
recent UAF vulnerability in iOS (CVE-2019-8605 [26]) is a
real example that shows PAC is unable to prevent temporal
memory corruptions, which are exploited for jailbreaking or
compromising iOS devices. In contrast, PTAuth is designed
to stop temporal memory corruptions, which remain a type of
commonly exploited vulnerabilities today.

2.3 Fixed Virtual Platforms (FVP)
The ARMv8.3-A architecture (including PAC) was an-
nounced in late 2016 and is expected to enter mass production
in 2020 to replace the current mainstream mobile architecture,
namely ARMv8.0-A. At the time of writing, no development
boards or commercially available SoC (Systems-on-Chip)
use ARMv8.3-A. Apple’s latest iOS devices, using the A12
Bionic SoC, is based on ARMv8.3-A and supports PAC. How-
ever, the SoC and OS are proprietary and cannot be used for
testing the prototype of PTAuth.

ARM offers so-called Fixed Virtual Platforms (FVP) for
to-be-released architectures [22]. FVP is a full-system simu-
lator that includes processors, memory, and peripherals. It is a
functionally accurate model of the simulated hardware. FVP
allows for the development and testing of drivers, software,
and firmware prior to hardware availability. It is widely used
in the industry.

Following this standard practice, we used the ARMv8.3-
A FVP when building and evaluating our prototype system.
Thanks to FVP’s functional accuracy, the evaluation results
obtained on FVP are expected to be close to those obtained
on actual hardware. We discuss more the implementation and
evaluation in §5 and §6, respectively.

3 Design

3.1 System Overview
The goal of PTAuth is to dynamically detect temporal memory
corruptions in the heap. The high-level idea is that, upon each
pointer dereference (or pointer-based object access), temporal



memory corruption can be detected by checking (1) whether
the pointer is pointing to the original or intended object, and
(2) whether the metadata or evidence proving the points-to
relationship is genuine.

Although the high-level idea is conceptually straightfor-
ward, how to realize it in an efficient and secure way is in fact
challenging. What metadata are needed for establishing the
points-to relationship? How are they computed and where are
they stored? How can their integrity be verified? Answers to
these design questions determine the efficiency and robustness
of PTAuth. For instance, recording too much metadata leads
to unnecessarily big memory footprint and redundant checks.
Storing metadata separately from objects and pointers may
ease metadata protection but significantly increase the over-
head for locating and accessing metadata. Storing metadata
in-place allows for fast access, but pointer arithmetics may
complicate locating metadata. Moreover, in-place metadata is
hard to protect and can be easily corrupted.

Our points-to authentication scheme overcomes these chal-
lenges and the limitations of previous works. PTAuth ran-
domly generates an ID for each heap object upon its alloca-
tion. It also computes a cryptographic authentication code
(AC) based on the object ID and the base address of the object.
The object ID, stored at the beginning of the object, and the
AC, stored in the unused bits of the object’s pointer, together
serve as the metadata to establish the verifiable points-to re-
lationship between the object and its pointers. Furthermore,
PTAuth can detect forged or corrupted metadata as long as
the key for computing AC remains confidential and the AC
computation can only be performed by PTAuth. We discuss
the detailed design of the points-to authentication scheme in
§3.4.

Our implementation of the points-to authentication scheme
takes advantage of the PAC feature on ARM architectures.
PTAuth uses PAC as a simple primitive, provided by hard-
ware, for computing and checking AC and securing the key.
We discuss in §3.5 the use of the PAC instructions and the
compiler-based code instrumentation.

Figure 1 presents an overview of the PTAuth system. The
PTAuth compiler instruments a protected application by in-
serting a runtime library and placing necessary hooks before
selected load and store operations. During runtime, the
PTAuth library checks the instrumented, pointer-based load-
/store operations. The checking is based on a novel scheme
that verifies the points-to relationship and the metadata in-
tegrity. It uses PAC as the hardware-based authentication
primitive. PTAuth also installs a tiny OS patch for manag-
ing PAC encryption keys, which are only accessible from the
kernel-space (or EL1) as enforced by the architecture. We
discuss the design details after explaining the threat model.

3.2 Threat Model

We adopt a threat model common to user-space dynamic
memory error checkers. We trust the OS and the underlying
hardware (i.e., the TCB). It is technically possible to reduce or
remove the trust on OS if a more privileged entity can protect
the PAC key management routine (e.g., a hypervisor or EL2),
which however is out of the scope for our current design. Our
threat model also assumes that the basic defenses against
code injection and modification are in place (e.g., DEP and
read-only code). This assumption is realistic because such
defenses are universally enabled on modern OSes. They are
needed for protecting code instrumented by PTAuth (e.g.,
inline checks cannot be removed or uninstrumented code
cannot be injected).

Our threat model also assumes that attackers cannot per-
form arbitrary memory read when exploiting temporal mem-
ory errors. Arbitrary memory read would allow an attacker to
read a legitimate AC in memory and possibly reuse it, thus by-
passing the security check. Assuming the absence of arbitrary
memory read in our context is acceptable because finding an
AC as well as its corresponding object ID in memory can be
quite challenging due to ASLR and the indistinguishability
between AC or ID values and other in-memory data. Moreover,
based on previous research [32,40] and real-world attacks [9],
attackers often exploit temporal memory errors as a stepping
stone to obtain arbitrary memory read abilities, as shown in
the high-profile WhatsApp double-free (CVE-2019-11932),
Internet Explorer use-after-free (CVE-2013-3893) and iOS
use-after-free (CVE-2019-8605 [26, 27]) exploits. Therefore,
it is realistic to assume attackers cannot perform arbitrary
memory read while exploiting temporal memory errors.

Previous works on temporal memory safety [44, 49, 58, 62,
65] made all the above assumptions as we do. Additionally,
they assumed the absence of spatial memory violations or
required an external spatial safety mechanism to protect their
metadata. In contrast, PTAuth does not make this assumption
or require external spatial safety enforcement. We relaxed the
threat model used in the previous work by allowing arbitrary
memory overwrite, which an attacker may use to corrupt the
metadata. Unlike the previous work, PTAuth has built-in meta-
data integrity check and is therefore robust against metadata
corruption caused by spatial memory errors or attacks.

One might argue that PTAuth can be bypassed by attackers
who are able to perform arbitrary memory read and write at
the same time. While this argument is technically true, such a
powerful attacker does not need to exploit temporal memory
vulnerabilities at all, or try to bypass PTAuth, because she
already has the ability to directly mount the final-stage attacks,
such as code injection or data manipulation.



C

Signature generation

Authentication

Deallocation

Runtime Library

C Instrumentation
Clang

IR1 2

Allocations: malloc, ...

Signature generation

Authentication

3
PAC Instructions

PACIA AUTIA XPAC

Pointers: load & Store

Deallocation

Deallocations: free, ...

Protected Binary

Compile time Runtime

...
...

IDa

FREE SPACE

objecta

Addressa
5: object *pointer = alloc(...); ACa

25: *pointer = 0x7fff5694...;

ACa = PACIA (Addressa, ID a)

AUTIA (Addressa, ID a)

Figure 1: During the compile-time (left), PTAuth instruments a C program. It places the hooks in the program that are needed for the PTAuth runtime library to
detect heap-based violations of temporal memory safety. The PTAuth library uses a novel authentication scheme (§3.4) that verifies the points-to relationship
from pointers to pointees. During runtime (right), the PTAuth library generates signatures (AC) for heap objects and their pointers upon memory allocations,
checks signatures upon pointer dereferences, and invalidates signatures upon object deallocations (§3.5). The scheme uses PAC as a simple building block for
hardware-based metadata signing, storing (for pointers only), and verification.

1 int* ptr = (int*)malloc(10);
2 int* qtr = ptr;
3 ...
4 if (error) {
5 free(ptr);
6 ptr = null;
7 }
8 ...
9

10 if (log)
11 logError("Error", qtr);

(a) Use-After-Free

1 int* ptr = (int*)malloc(10);
2 int* qtr = ptr;
3 ...
4 if (error) {
5 free(ptr);
6 ptr = null;
7 }
8 ...
9

10 cleanCache:
11 free(qtr);

(b) Double-free

1 char* ptr = (char*)malloc(10);
2 for (; *ptr != ’\0’; ptr++){
3 if (*ptr == SEARCH_CHAR)
4 {
5 printf("Match!");
6 break;
7 }
8 }
9 ...

10 cleanCache:
11 free(ptr)

(c) Invalid-Free

Figure 2: Examples of double-free, use-after-free and invalid-free temporal memory corruptions, which are undetectable by pointer integrity approaches but
detectable by PTAuth.

3.3 Example Vulnerabilities

Before describing our points-to authentication scheme, we
present three simple examples of temporal memory corruption
below, which help explain why PAC can reliably detect them.

Use-after-free vulnerability: Figure 2 (a) is a typical exam-
ple of UAF, where a pointer is used after its pointee has been
freed. In this case, qtr, an alias of ptr, is used at Line 11
after ptr has been freed at Line 5. Although the programmer
nullified the ptr at line 6, due to the aliasing, UAF still exists.

Double-free vulnerability: Figure 2 (b) shows a code snip-
pet where a pointer can be freed twice, which may lead to
undefined behaviors, including arbitrary memory writes.

Invalid-free vulnerability: Figure 2 (c) demonstrates a case
where a pointer is freed while it is not pointing to the begin-
ning of a buffer. This is a special type of temporal memory
corruption [8, 49].

3.4 Points-to Authentication Scheme

Our authentication scheme applies to two types of data: ob-
jects and data pointers. Objects are dynamically allocated
data on the heap. Data pointers reference the addresses of ob-
jects (we only consider pointers to heap objects in this paper).
PTAuth verifies the identity of every object and the points-to
relationship before it is accessed through a pointer. This ver-
ification relies on the AC (or authentication code) generated
for the object and stored in its pointers.

The ID of an object is saved as inline metadata immediately
before the object in memory (Figure 3). The ID establishes
unique identities for objects and allows for binding pointers
to their referenced objects (i.e., making the points-to rela-
tionship verifiable), which is essential for detecting temporal
memory corruptions. Figure 3 (lower right) shows two objects
in the heap with their metadata. The ID is a 64-bit random
value generated at the allocation of the object. An AC is 16-
bit long and stored in the unused bits of a pointer (i.e., 48



...
...

64 bits

Address

16 48

8 byteAC

IDa

Heap

FREE SPACE

Stack

objecta
pointerb

pointera

ACa Addressa

ACa Addressa + 8

ACb Addressb

AC = PACIA (Address , ID )

IDb

objectb

Figure 3: Authentication code (AC) and object metadata (ID) defined by
PTAuth for pointers and objects. The object metadata is stored in the 8-byte
memory proceeding the object. The AC is stored in the unused bits of the
pointer, which is 16-bit long.

effective bits in a pointer). Unlike the previous works such
as DangNull [44], which only protect pointers residing in the
heap, PTAuth authenticates data pointers stored everywhere
in memory, including heaps, stacks and global regions.

Next, we explain the definition and calculation of AC. We
then discuss in §3.5 the runtime AC generation and the check-
ing mechanism.

Data Pointers: AC essentially binds a data pointer to its
pointee and makes the binding verifiable. AC encodes: (1)
the identity of the pointee object, and (2) the base address of
the pointee. The ID and the base address together uniquely
identify an object in time and space. This definition not only
makes the points-to relationship easily verifiable, but also mit-
igates metadata reuse attacks. Figure 3 (bottom left) shows
the computation of AC using the PACIA instruction. PTAuth
performs this computation when an object is allocated. When
an object is deallocated or reaches the end of its life cycle,
PTAuth simply invalidates its ID (setting it to zero). Upon
each pointer dereference, PTAuth recomputes the AC and com-
pares it with the AC stored in the pointer. A mismatch indicates
a temporal memory safety violation. No temporal memory
corruption can happen without failing the points-to authenti-
cation.

In our scheme, less memory is used for storing the meta-
data for both pointers and objects than most previous works.
Furthermore, there is no assumption that the metadata cannot
be tampered with. Last but not least, PTAuth can find the base
address of an object reliably with the help of PAC. This is
necessary for supporting pointer arithmetic operations, which

may shift a pointer to the middle of its pointee, than thus, fail
a naive authentication that simply takes the pointer value as
the object base address. We discuss the details in §3.5.

The PAC instruction encrypts/signs the inputs (i.e., object
ID and base address) using a data pointer keys (data.A or
data.B) and saves the truncated ciphertext to the unused bits
in the pointer. Therefore, unlike an object, PTAuth does not
need to use extra space for storing AC for pointers. An AC is
generated whenever a pointer takes a new value, which can
happen at object allocation or when the pointer is re-assigned
to another object (e.g., via the reference operator “&”).

After a pointer becomes stale when its pointee is freed,
any dereference of the dangling pointer will trigger an object
ID mismatch, due to either the invalidated ID of the freed
object, or a different ID of a new object allocated at the same
location. Other temporal memory errors, such as double-free
and invalid-free can be detected by PTAuth in the same way.

Code Pointers: Checking the integrity of code pointers is
an intended use of PAC and is fairly straightforward. Unlike
data pointers, we do not define our own AC for code pointers.
PTAuth is fully compatible with the intended use of PAC for
code pointers for preventing control flow hijacking attacks.
They can be used together to thwart a broad range of attacks.
We do not consider or claim code pointer authentication as a
contribution to this work. For the rest of the paper, we focus
our discussion on authenticating the points-to relationships
while referring readers to the PAC documentation [12,16] and
PARTS [45] for code pointer authentication.

3.5 Compiler-based Code Instrumentation &
Runtime AC Checking

To apply the points-to authentication scheme to a given
program, PTAuth takes the general approach of inline ref-
erence monitoring. Via a custom compilation pass added
to LLVM [24], PTAuth instruments the program so that AC
can be generated and checked at the right moments during
program execution. The instrumentation is performed at the
LLVM bitcode level, which is close to assembly code while
retaining enough type and semantic information for our code
analysis and instrumentation. The instrumentation sites are
carefully selected to minimize the interception of program ex-
ecution. Below we discuss in detail the code instrumentation
needed for each type of operation on AC.

AC Generation: During runtime, PTAuth needs to generate
AC for data pointers whenever a new points-to relationship is
created. To this end, during compilation, PTAuth performs
two types of instrumentation. First, it instruments all essen-
tial API for heap memory allocation, including malloc (the
dynamic allocator for heap objects), calloc and realloc.
PTAuth only works on user-space programs and we assume
the ptmalloc allocator is used. This instrumentation allows
PTAuth to intercept all memory allocations, where the object



ID is generated and the AC for the pointer is computed as
follows:

1 /* Computing AC for Data Pointer */
2 ID = RandomID() // 64-bit
3 AC = PACIA|B <BasePointer ><ID>

Second, PTAuth instruments object deallocation sites, like
free (heap object deallocation). At an object deallocation site,
PTAuth simply sets the object ID to zero, which invalidates
the object and thus prevents any further use of the object.
Figure 3 (upper right) shows an example pointer and its AC.
The base address and the ID of the pointee are used as the
two inputs to the PACIA|B instruction to generate the AC:

AC Checking: PTAuth performs points-to authentication by
checking the AC whenever a pointer-based data access hap-
pens (or a pointer reference occurs). During compilation,
PTAuth instruments LLVM load and GetElementPtr in-
structions for pointers. For simplicity, we generally refer to
both as load in our discussion. PTAuth verifies the integrity
of the pointer and authenticates the AC of the pointer value as
follows:

1 /* Authenticating AC for Data Pointers */
2 ID = getID(Pointee) // Pointee is an object
3 AUTIA|B <BasePointer ><ID>

Due to pointer arithmetics, a (legitimate) pointer may some-
times point to the middle, instead of the base, of its pointee.
Therefore, during AC checking, PTAuth cannot simply use the
value of the pointer as the base address of the to-be-accessed
object. A naive solution to this problem is to use additional
metadata for recording the object base address for each pointer.
However, this not only increases space overhead but creates
a more challenging problem of propagating the metadata as
pointers are copied or moved.

Backward Search: PTAuth finds the base address of an ob-
ject during runtime without requiring any additional metadata.
For each AC checking, PTAuth, by default, uses the pointer
value as the object base address. If the check fails, two possi-
bilities arise. First, the pointer is valid but is pointing to the
middle of its pointee (i.e., its value is not the base address,
hence the mismatched AC). Second, the pointer is invalid and
a temporal memory violation is about to happen. When en-
countering a failed AC check, PTAuth initially assumes that
the first possibility happened. It then starts a backward search
from the current pointer location for the based of the object.
Since objects are 16-byte aligned in memory, the backward
search only looks for the object base addresses divisible by 16.
This optimization makes the backward search fast. The search
terminates when (1) an AC match occurs (i.e., the correct Ob-
ject ID and the base address are found), or (2) the search
has exceeded the max distance or reached invalid memory, in
which case a true temporal memory error is detected.

Our backward search scheme is tested, and works well, on

ARMv8.3-A (the latest Cortex-A architecture available to-
day). It is worth noting that the PAC instructions in the future
ARMv8.6-A architecture may generate an exception when an
authentication fails [25]. Our backward search scheme can
work with the exception-enabled PAC instructions by hav-
ing a tiny kernel patch that masks/disables the corresponding
exceptions [20] during the (transient) backward search win-
dow. The exception masking code is only callable within the
backward search function and thus cannot be abused by at-
tackers. We are unable to evaluate this patch due to the lack of
hardware or simulator for ARMv8.6. The rest of the PTAuth
design and implementation is compatible with ARMv8.6.

Metadata propagation: Thanks to our in-pointer storage of
AC, when a pointer is copied or moved, the metadata of the
pointer is automatically propagated without any special hand-
ing by PTAuth or any software. As for metadata for objects
(i.e., IDs), they are not stored inside objects and thus are not
automatically propagated during object duplication or move-
ment. However, this is intended—object metadata should not
be propagated when objects are copied or moved. This is
because in our points-to authentication scheme, an object ID
is assigned to and associated with the allocated buffer, rather
than the data stored in that buffer. In contrast, previous works
on temporal memory error detection, such as CETS [49], re-
quire special handling of metadata propagation at the cost of
degraded runtime performance and limited data compatibility.

Handling deallocation: In contrast to pointer dereferencing,
where a pointer can point to the middle of an object, for the
deallocation procedure, the pointer should always point to the
beginning of the object. Otherwise, invalid-free occurs, lead-
ing to undefined behaviors and temporal memory errors [8].
Based on this fact, PTAuth only performs one round of AC
checking without the backward base address search. If the
authentication fails at a deallocation site, it is either a double-
free or an invalid-free error. If the authentication succeeds,
PTAuth simply sets the object ID to zero (i.e., invalidation)
and lets the program execution continue.

Handling reallocation: During reallocation, the base address
of an object may or may not change depending on the size
of the object and the layout of the memory. PTAuth handles
reallocation by instrumenting realloc. If the base of an ob-
ject has changed, PTAuth nullifies the ID of the old object,
generates a new ID, and computes a new AC for the new base
pointer. As a result, the existing (stale) pointers to the old
object become invalid and cannot be used anymore.

External/uninstrumented Code: During compilation time,
PTAuth treats as a blackbox externally linked code or code
that cannot be instrumented. This design enables backward
and external compatibility. PTAuth instruments the entries
to such blackboxes so that immediately before an object or
pointer flows into a blackbox (e.g., as an argument to an exter-
nal function call such as memcpy), PTAuth authenticates the
pointer and then strips off its AC, which can be done efficiently



CETS [49] DangNull [44] DangSan [62] CRCount [58] PTAuth
Allocation Generate lock & key Register pointer Register pointer Generate reference counter Generate ID & AC
Pointer dereference: *p Comparison of key and lock value No check No check No check Points-to authentication
Copy ptr arithmetic: p = q+1 Propagate lock address and key Update register ptr Update register ptr Update reference counter No cost
Deallocation Invalidate lock Invalidate pointers Invalidate pointers Delayed deallocation Invalidate ID
Memory overhead O (# pointers) O (# pointers) O (# pointers) O (# pointers) + Mem leaks O (# objects)
Metadata handling Disjoint Disjoint Disjoint Disjoint Inline
Metadata safety guarantee 5 5 5 5 4

Table 2: Comparison of our approach with the closely related works, in terms of the use/check, management, and protection of the metadata.

using the XPAC instruction. Conversely, when a pointer returns
from a blackbox, PTAuth generates the AC for it, whose sub-
sequent uses are subject to checks.

3.6 Optimizations

Unnecessary Checks: We optimize the instrumentation strat-
egy by avoiding insertions of unnecessary checks during com-
pilation. The optimization is inspired by the fact that, for any
valid pointer, UAF and other temporal memory violations can-
not happen through the pointer until it is being freed or later.
Therefore, it is not necessary to perform points-to authentica-
tion on any use of a pointer that can only take place before
the pointer is freed. Obviously, detecting all such pointer
uses in a program is an untractable problem [43, 55], which
requires perfect alias analysis. However, we can solve this
problem within the scope of a function by performing con-
servative intra-procedural analysis. By tracking a pointer’s
def-use chain inside a function, we can identify a set of use
sites where the pointer and its aliases have not been free or
propagated out of the function. PTAuth can safely ignore
these use sites during instrumentation (i.e., no runtime check
is needed).

1 void quantum_gate2 (quantum_reg *reg){
2 int i, j, k, iset;
3 int addsize=0, decsize=0;
4
5 if(reg->num > reg ->max )
6 printf("maximum",reg->num);
7
8 else {
9 for(i=0; i<(1 << reg->hashw); i++)

10 reg->hash[i] = 0;
11
12 for(i=0; i<reg ->size; i++)
13 quantum_add_hash(reg->node[i].state , i,

reg);
14 ...

Figure 4: Optimization in PTAuth. This example shows that the reg pointer
is used multiple times in this function. Since the pointer is authenticated
before passing to the quantum_gate2 function, no check on it is needed
until Line 13 where the pointer is passed to another function as an argument.
Due to the limitation of intra-procedural analysis, we cannot track the pointer
into the quantum_add_hash function to make sure that it is not being freed.
Therefore, After this point, all the temporal checks will be in place.

Figure 4 demonstrates an example of how redundant checks

are removed by optimization. In this example, all checks
on reg up to Line 13 are unnecessary and are omitted by
PTAuth. Note that this optimization only works on single-
threaded programs. We also extend this optimization to the
implementation level. Some frequently used glibc functions
such as printf and strcpy never free pointers passed to
them as parameters. Therefore, we whitelist such functions
and allow the intra-procedural discovery of safe pointer uses
to continue beyond such functions.
Global objects: Performing temporal checks on pointers to
global objects is also unnecessary because such objects are
never deallocated. PTAuth detects those address taken global
objects that can be determined statically during the compile-
time and remove the checks for them.

3.7 Design Comparison
In Table 2, we compare PTAuth with closely related works
in terms of the use/check, management, and protection of
the metadata. PTAuth uses inline metadata, which makes the
access fast because no heavy lookup is needed. Thanks to the
inline metadata, the memory overhead of PTAuth is low and
there is no complex handling needed for pointer arithmetics
and metadata propagation. PTAuth uses PAC to compute
and secure metadata without requiring external spatial safety
schemes.

4 Security Analysis

An attacker may attempt to evade PTAuth with the goal of
causing temporal memory corruption without being detected.
We analyze the possible attacks permitted by our threat model
and explain how the design of PTAuth prevents them. Since
PTAuth performs load-time authentication and our threat
model assumes attackers capable of arbitrarily writing to data
memory (e.g., by exploiting certain vulnerabilities), the at-
tacker essentially needs to somehow generate the correct AC
for the data pointer that she writes before the data is used by
the target program or checked by PTAuth. We note that code
inject or modification is not allowed under our threat model
thanks to DEP and the read-only code region. We identify the
following ways that attackers may try to forge the AC.
Directly generating AC: One intuitive evasion of PTAuth
is to generate the AC for the attacker-supplied data, either



offline or dynamically. Offline AC generation does not work
because the set of keys used for calculating AC is dynamically
generated for each program execution or process and is not
static. Alternatively, the attacker may try to directly generate
AC on the fly while the target program is running. This is
impossible either because the PAC keys are stored in the
special CPU register and not accessible from the user space,
even if the attacker has the arbitrary memory read capability.
Moreover, the attacker cannot inject code and thus cannot
directly calculate AC using injected PAC instructions. Also,
brute-force is not applicable in this context because one wrong
guess can lead to a crash of the process.
Reuse PAC instructions: The attacker’s next possible move
could be to reuse the existing PAC instructions already loaded
in the memory (e.g., those used by PTAuth) for calculating AC
on injected data. However, our system can easily get merged
with the standard use of PAC for protecting code pointers as
well. Therefore, code reuse attacks are prevented thanks to
the code pointer integrity check by PAC (i.e., any corrupted
return addresses or call/jump targets trigger authentication
failures and are detected before the program control flow is
hijacked).
ID spray: Another possible attack vector is spraying the ID
into the object to misguide the dangling pointers that are point-
ing to the middle of object. The design of PTAuth considers
this attack. Since the AC is bound to the beginning address
of an object, even if the correct ID is found in the middle of
object, the authentication will fail.

5 System Implementation

We built a prototype for the PTAuth system, including (i) a
customized compiler for instrumenting and building PTAuth-
enabled programs, (ii) a runtime library, linked to instru-
mented programs, for performing dynamic AC generation and
authentication, and (iii) a set of bootloader and Linux patches
necessary for configuring the CPU and enabling the PAC fea-
ture [15, 19]. All the system components are implemented
in C/C++ with a small set of inline assemblies that directly
use the PAC instructions. The PTAuth LLVM pass is ap-
proximately 2K lines of C++ code and the runtime library is
1K lines of C code. The current implementation supports C
programs. It is based on ptmalloc memory allocator from
glibc. It supports all common memory allocation APIs, such
as malloc, calloc, realloc and free.
Customized Compiler: Our compiler is based on LLVM 6.0,
which already has basic assembler and disassembler support
for PAC on ARMv8.3-A. We built the code analysis and
instrumentation logic (§3.5) into an LLVM transform pass. It
operates on the LLVM bitcode IR. At each instrumentation
site, such as pointer load and store, it inserts a call, based
on the type of the instrumented instruction, to the PTAuth
runtime library.

Runtime Library: The runtime AC checking logic is built
into a dynamically linkable library. It exposes the call gates
for the instrumented code to invoke the AC generation and
authentication routines. These routines calculate or check
AC for different scenarios, as describe in §3.4 and §3.5. The
library does not maintain any data internally thanks to the in-
place storage of AC and the OS-managed PAC keys. Therefore,
no data inside the library needs to be protected or verified.
However, we do enable code pointer integrity checking using
PAC when compiling the library, which ensures that no control
flow hijacking can occur while the library code is running.

OS and bootloader patches: By default, PAC instructions
(except for PACGA and XPAC) are disabled. According to the
ARMv8 reference manual [18], to use all PAC instructions
and the corresponding key slots, the OS needs to set to 1 the
EnIA, EnIB, EnDA, EnDB fields in the SCTLR_EL1 register.
Additionally, the SCR_EL3.APK and SCR_EL3.API registers
need to be set to 1 during the system booting stage. These
configurations are necessary to fully enable the PAC hardware
extension. The OS also needs to generate and manage PAC
keys for each process (only OS or code running at EL1 is
allowed to manage PAC keys). We implemented these config-
urations and tasks via two small patches to the bootloader [19]
and the Linux kernel. These small patches do not interfere
with any bootloader or OS functionalities because (i) the con-
figured register fields are reserved exclusively for PAC, and
(ii) the added PAC key management routine does not interact
with the rest of the OS.

We built the patched bootloader and kernel into a system
image, which was then installed on the ARMv8.3-A FVP.
As discussed in §2.3, FVP is the functional-accurate whole-
system simulator for ARM architectures, which emulates pro-
cessors, memory, and peripherals. We used this prototype and
environment for evaluating PTAuth.

6 Evaluation

In this section, we evaluate the prototype of PTAuth in terms
of security, runtime overhead and memory overhead. The
security evaluation (§6.2) was conducted on the ARM FVP
simulator. The performance evaluation (§6.3) was performed
on a Raspberry Pi 4 with ARMv8-A Cortex A53 processor
(1.5GHz) and 4GB memory, running Gentoo 64-bit Linux
(v4.19). We explain the rationale behind this setup in §6.1.

Our experiments aim to show: (i) whether PTAuth detects
temporal memory corruptions such use-after-free, double-
free and invalid-free; (ii) how much performance overhead
PTAuth incurs during runtime; (iii) how much memory over-
head PTAuth incurs during runtime. We used Juliet test suite
[33] and four real CVEs for security experiments. To evaluate
the runtime and space overhead, we used SPEC CPU2006.



1 long MASKBITS = 0b000 ...000111111111111111;
2 void* __pacia(void* ptr,int id){
3 long ptrbits = (unsigned long)ptr &

MASKBITS;
4 long idbits = id & MASKBITS;
5 long signature = ptrbits ^ idbits;
6 signature = signature << 48;
7 unsigned long ptrWithSign = (unsigned

long)ptr | signature;
8 return (void*)ptrWithSign;
9 }

Figure 5: Software implementation of PACIA instruction as a function.

6.1 Experiment Setup and Methodology
We performed the security evaluation (§6.2) on the FVP sim-
ulator that supports PAC. At the time of writing, no publicly
available development board supports ARMv8.3 or PAC in-
structions. Although Apple’s A12 Bionic SoC supports PAC
instructions, it is a proprietary implementation and we were
not able to instrument and run the benchmarks on top of
that. We patched the bootloader and OS in the FVP image as
described in §5.

We conducted the performance evaluation (§6.3) on a Rasp-
berry Pi 4 (ARMv8-A Cortex A53), rather than FVP. This
change of platform is necessary because the benchmarks
(SPEC CPU2006) are too heavy to run on the FVP—they
often crash or halt the simulator. To allow PTAuth to run
on the Raspberry Pi, which does not support PAC, we im-
plemented in software the three PAC instructions used by
PTAuth, namely PACIA, AUTIA, and XPAC. The input/output
syntax of these functions is identical to that of the original
PAC instructions. Figure 5 demonstrates the implementation
of PACIA instruction as a C function. The other PAC instruc-
tions are implemented based on PACIA. It is worth noting that
our software PAC implementation does not contain the exact
cryptographic algorithm (QARMA) used in PAC instructions.
This is because a software implementation of QARMA would
be much slower than the hardware implementation and thus
make it difficult to measure the real performance overhead
caused by PTAuth. Instead, we chose a simple encryption
and AC computation, keeping the overhead comparable to
hardware-based encryption and allowing the performance
evaluation to focus on the overhead of PTAuth itself.

Our implementation of PTAuth uses a compile-time flag
to indicate whether the compiled binary should use software-
emulated PAC or hardware-based PAC instructions. Figure 6
shows an example of the inline assembly.

6.2 Security Evaluation
The security evaluation is a functional test and serves two
purposes: (1) testing PTAuth’s compatibility with the underly-
ing hardware feature, namely PAC, and (2) testing PTAuth’s
detection of temporal memory corruptions and its robustness

1 #if PACENABLED
2 asm (
3 "mov %x0 ,%0\n"
4 :
5 : "r" (ptr));
6 asm(
7 "pacia %x0, %x1\n"
8 : "=r" (ptr)
9 : "r" (id));

10 #else
11 ptr =__pacia(ptr,id);
12 #endif

Figure 6: When the PACENABLED flag is enabled during the compile-time,
actual PAC instructions are generated for the final binary. Otherwise, software
implementation of the corresponding instructions is invoked. This implemen-
tation helps to test the design on an SoC that does not support the ARMv8.3
instruction set.

Vulnerability CWE Cat. # of Prog. PTAuth PAC / PARTS [45]
Double-Free 415 50
Use-After-Free 416 50
Invalid-Free 761 50

Table 3: Selection of 150 vulnerable programs from the Juliet Test Suite and
detection results.

against evasions. Similar to the previous work [45], we chose
the ARM FVP simulator for this functional test because no
development board with PAC extension exists at the moment
and FVP includes ARM’s official and fully functional PAC
simulation.

We performed the security evaluation using 150 C pro-
grams selected from the NIST Juliet test suite [33]. We chose
the Juliet Suite for two reasons. First, it is the largest of its kind
and contains both vulnerable and non-vulnerable versions of
programs. The vulnerable programs, covering the common
types of temporal memory corruptions, are ideal for our se-
curity evaluation. We used the non-vulnerable/patched coun-
terparts for a compatibility test. Second, unlike the generic
CPU benchmarks, the test programs in Juliet were made for
security testing without being computationally demanding.
They run smoothly on FVP, which is a whole-system (slow)
simulator and cannot run computation-intensive programs
without halting or crashing. Therefore, using the Juliet pro-
grams allows us to focus on evaluating PTAuth in terms of
security while avoiding high computation loads that FVP can-
not handle. We conducted a separate performance evaluation
of PTAuth (§6.3) using much demanding CPU benchmarks.

The 150 Juliet tests include double-free, use-after-free and
invalid-free bugs. Table 3 shows the CWE (Common Weak-
ness Enumeration) categories and the number of Juliet tests
selected in each vulnerability category. When running with
PTAuth enabled, the vulnerable programs all terminated im-
mediately before the bugs were triggered. We also ran the
non-vulnerable/patched version of the test programs with
PTAuth enabled. All these programs finished properly with-



Application CVE Vulnerability Type Detection
libpng CVE-2019-7317 UAF 3
sqllite CVE-2019-5018 UAF 3
curl CVE-2019-5481 DF 3
libgd CVE-2019-6978 DF 3

Table 4: Effectiveness of PTAuth for detecting real-world vulnerabilities.

out any crash or halt. The result shows that PTAuth achieved a
100% detection accuracy and did not cause any compatibility
issues: it did not miss a single temporal memory corruption
in any category; it did not alert or crash the programs when
no temporal memory corruption was triggered.

The right-half of Table 3 shows a comparison between
PTAuth and PAC/PARTS [45]. PAC and PARTS were not de-
signed for detecting temporal memory corruptions and there-
fore cannot detect any. This comparison underlines our novel
use of PAC for addressing a critical security vulnerability
class, which is not considered or detectable by the original
design of PAC or previous work using PAC.

Case study of real-world vulnerabilities: Besides the Juliet
test programs, we also surveyed four recent temporal memory
corruption vulnerabilities in real software (Table 4). Since
FVP cannot run these entire programs, we performed a man-
ual analysis and verified that PTAuth can prevent the ex-
ploitations of all these vulnerabilities. For instance, To exploit
CVE-2019-5481, an attacker sends a crafted request, which
realloc() fails to handle. On the exit path, the pointer is
freed. During the cleaning phase, the pointer is freed one
more time. Since these two steps are far apart, programmers
can easily miss the bug. When PTAuth is enabled, the ID
of the object is changed after the first free and thus causes
an authentication failure when the second free is about to
happen.

Take CVE-2019-7317 as another example, shown in Fig-
ure 7. Line 5 indirectly calls png_image_free_function,
which frees the memory referenced by arg, an alias of image.
Later, Line 7 dereferences image, resulting in use-after-free.
This bug can be extremely difficult to discover either manu-
ally or using analysis tools, due to the layers of function and
object aliasing. PTAuth handles aliasing naturally thanks to
its points-to authentication scheme. PTAuth can catch this
bug right before it is triggered due to the AC mismatch.

Robustness evaluation: We created a small set of programs
that contain both temporal and spatial memory corruptions
to evaluate the robustness of PTAuth. This scenario is analo-
gous to the real-world attacks where a powerful attacker can
exploit arbitrary memory write and temporal memory cor-
ruptions. We selected 30 programs from Juliet test suite in 3
different categories. Then, we injected memory overwrite vul-
nerabilities such as buffer-overflow to them, which allow an
attacker to overwrite the PTAuth metadata. Such an attacker
can bypass previous protections, such as CETS, which simply

1 if (result != 0)
2 {
3 image ->opaque ->error_buf = safe_jmpbuf;
4 // calling png_image_free_function()

indirectly
5 result = function(arg);
6 }
7 image ->opaque ->error_buf = saved_error_buf;

Figure 7: In CVE-2019-7317, the png_image_free_function is called
indirectly and the image pointer is passed to it as an argument. In this case,
the image pointer is freed in the caller and then used in line 7, which is UAF
error.

Figure 8: Runtime overhead (95% confidence interval) on SPEC CPU2006
and comparison with CRCount, DangSan and CETS.

compare the plain ID of the key and object. However, the
attacker cannot bypass PTAuth because she cannot generate
valid AC without knowing the secret PAC key. As expected,
we triggered those vulnerabilities and PTAuth detected all.

6.3 Performance Evaluation
We had to switch from the FVP simulator to a Raspberry Pi
4 (ARMv8-A Cortex A53) for conducting the performance
evaluation because the simulator could not run computation-
intensive benchmarks. Due to the lack of hardware support
for PAC on the Raspberry Pi SoC, we used our own software
implementation of PAC in this evaluation. This experiment
provides an upper bound of the performance overhead of
PTAuth (i.e., the overhead should be lower on devices with
hardware PAC support).

We tested PTAuth on the SPEC CPU2006 benchmarks.
They are appropriate for the performance evaluation since
they are memory- and CPU-intensive. Figure 8 shows the
runtime overhead of PTAuth with 95% confidence interval.
The interval bars are barely visible in the figure due to the
relatively stable results. Figure 13 in Appendix A shows more



clearly, for each benchmark, the concentrated distribution and
the narrow standard deviation of the measured overhead. The
overhead varies across different benchmarks because the use
of data pointers and dynamically allocated objects in some
benchmarks is more prevalent than in other benchmarks. For
instance, although mcf is a small program, it uses many data
pointers and requires more AC checks than other benchmarks.

We compared PTAuth with the closely related works, in-
cluding CRCount [58], DangSan [62], and CETS [49]. These
prior techniques are either based on pointer invalidation or
object (lock) invalidation. In our comparison, we skipped
DangNull [44] because DangSan outperforms it. Since the
source code of CRCount is not available and DangSan and
CETS are not compatible with the ARM architecture, we used
the reported numbers in the papers for comparison. The nine
C benchmarks in Figure 8 were selected because they are
both compatible with our current implementation and were
used in the previous works. We note that the compared papers
did not use the same set of benchmarks in their evaluation.
Some of them did not report the performance numbers for all
nine benchmarks. For example, CETS was not evaluated on
433.milc and 464.h264ref.

The geometric mean overhead of PTAuth on all bench-
marks is 26%. The number around 5% for CRCount, 1% for
DangSan, and 10% for CETS. Although PTAuth appears to
incur much higher overhead than the others, we note that this
comparison is not completely fair because, unlike PTAuth,
the other systems require external protection of their metadata
(e.g., bound checkers), which incurs additional overhead not
captured in this comparison.

For this reason, we conducted another experiment, where
we added the reported runtime overhead of SoftBound [48]
to the overhead of DangSan, CRCount and CETS. This com-
bined overhead represents what these systems would incur
when they are deployed with the required external protection
and made as robust as PTAuth. The results are shown in Fig-
ure 9. Only three of the nine benchmarks were tested in [48]
and thus were included in this comparison. Clearly, PTAuth
incurs much less overhead than the other systems on two out
of the three benchmarks.

Statistical significance: To prove that our performance result
is statistically significant, we perform the following hypothe-
sis testing and show that the performance overhead of PTAuth
has a statistically significant upper bound at 42% (with a P-
value under 0.05). We construct the Null Hypothesis that “the
runtime overhead of PTAuth is not below 42%”. We show
below that this Null Hypothesis can be rejected. We calculate
the Z-score = M�µ

sp
n

, where M is the measured average runtime

overhead of PTAuth (i.e., 33.2%), s is the standard deviation
of the measured overheads (i.e., 0.159), n is the sample size
(i.e., 9), and µ is the overhead bound stated in the Null Hy-
pothesis (i.e., 42%). The calculated Z-score is �1.66038. Its
corresponding P-value is 0.04846, which is below the widely

Figure 9: Runtime overhead of temporal memory corruption detectors when
they are combined with SoftBound to protect their metadata. PTAuth is
a stand-alone system and does not need an external system to protect its
metadata.

accepted significance level of 0.05. The result of this hypoth-
esis testing shows that a statistically significant upper bound
for PTAuth’s overhead can be established at 42%.

Backward search overhead: Backward search incurs the
worst-case runtime overhead when many large memory ob-
jects exist with many sub-objects referenced directly by point-
ers. However, in practice, we observed that this worst-case
scenario is quite rare and the overhead of backward search is
generally low. Figure 10 shows the overhead caused by back-
ward search in each benchmark, as part of the overall overhead.
The main reason for the low overhead of backward search is
that most large objects are of struct type. The fields/sub-
objects of the large objects are often accessed via an index
from the beginning of the large objects, rather than direct or
calculated pointers to the middle of the objects. Therefore, no
backward search is needed for those accesses to fields or sub-
objects. Also, pointer arithmetics is not frequently used in the
benchmarks and regular programs. However, 401.bzip2 and
462.libquantum contain more pointer arithmetic operations
than other benchmarks. Furthermore, our optimization (§3.6)
removes some unnecessary checks on pointers.

Overhead under fixed-cycle PAC emulation: In addition to
evaluating PTAuth’s performance using our software imple-
mentation of PAC, we conducted another experiment to esti-
mate the performance of PTAuth running on future hardware
with PAC support. This additional experiment was inspired by
PARTS [45], where we used equal-cycle NOP instructions to re-
place PAC instructions (assuming each PAC instruction takes
4 CPU cycles as per [45]). Unlike PARTS, our system cannot
fully function when PAC instructions are simply replaced
with NOPs. This is because the backward search technique
requires correct AC produced by PAC instructions. Therefore,
in this experiment, we disabled the backward search and the
corresponding checks on sub-objects. This experiment is only



Figure 10: The overhead of backward search in each benchmark.

Figure 11: The overhead of PTAuth with 4 CPU cycles and non-optimized
implementation

meant to complement the main performance evaluation (the
one using the software-based PAC). Figure 11 shows the
runtime overhead on the benchmarks assuming each PAC
instruction takes exact 4 cycles. Base on this result, we expect
the runtime overhead of PTAuth to decrease to 20% when
PTAuth runs on devices that support hardware PAC.

Optimization benefit: In order to measure the effectiveness
of the optimization described in §3.6, we disabled the opti-
mization during the instrumentation and conducted the exper-
iment again. Figure 11 shows the benefits of the optimization.
As expected, the intra-procedural analysis for eliminating un-
necessary checks reduces, on average, 72.8% of the overhead.

Memory overhead: In our design, pointer metadata is stored
in the unused bits of a pointer and requires no extra memory.
The only source of PTAuth’s memory overhead is the extra 8-

Figure 12: Memory overhead on SPEC CPU2006 and comparison with
CRCount and DangSan. CETS have not reported any memory overhead.

byte memory allocated for storing each object ID. We reduce
this memory overhead based on the following observation.
The ptmalloc allocator in the glibc of Linux appends extra
paddings to objects when object sizes are not 32-byte aligned.
For instance, when a 16-byte object is allocated, it is padded to
32 bytes. For objects with such paddings, PTAuth makes use
of the padding bytes for storing object IDs, without requiring
additional memory space.

To evaluate the memory overhead of PTAuth, we measured
the maximum resident set size (Max RSS) of the instrumented
SPEC CPU2006 benchmarks. Max RSS (i.e., the peak phys-
ical memory allocation for a process) is the metric used by
related works. We adopted the same metric to perform a
fair comparison. Figure 12 illustrates the memory overhead
caused by PTAuth, DangSan, and CRCount on each bench-
mark. The geometric mean of PTAuth’s memory overhead is
2%. This number is 2% for CRCount and 15% for DangSan.
CETS did not report memory overhead.

In addition to maximum RSS, we also measured the mem-
ory overhead of PTAuth in terms of mean RSS, a metric that
captures the memory usage throughout the entire process ex-
ecution, as opposed to the peak usage at one moment. We
calculated mean RSS by taking RSS every five seconds during
the lifetime of a process and then computing the mean. The
mean RSS overhead of PTAuth is 1%. The related works did
not report this number and thus cannot be compared with in
this regard.

7 Discussion and Limitation

Multi-threading: Similar to previous works, the current
PTAuth prototype does not support multi-threaded programs,
mostly due to implementation-level simplifications. To make



PTAuth work on multi-threaded programs, each memory
(de)allocation and the resulting metadata updating operation
need to be atomic, or the metadata protected by a lock. With-
out the atomicity or synchronization, PTAuth’s metatdata may
become stale or invalid when a race condition occurs, leading
to missed or falsely detected temporal memory errors. It is
worth noting that the unnecessary check removal (one opti-
mization discussed in §3.6) is not threading-safe and needs to
be disabled on multi-threaded programs.

Stack use-after-free: Since the deallocation of stack objects
is implicitly triggered by function returns, double-free bugs
cannot happen to stack objects. However, use-after-free bugs
on stack objects, though uncommon, may happen when the ad-
dress of a stack object is taken and stored in a global variable
that is later mistakenly freed. The current design of PTAuth is
focused on detecting heap-based temporal errors, which are
more prevalent and critical than stack-based use-after-free. In
theory, PTAuth can be extended to detect the latter as follows.

We refer to stack objects referenced by global pointers as
address-taken objects (i.e., stack objects potentially vulnera-
ble to use-after-free). Since object allocation and deallocation
on the stack are different from those on the heap, protecting
address-taken objects require special treatment. First, PTAuth
needs to identify address-taken objects in stacks via a simple
intra-procedural data-flow analysis. Then, PTAuth needs to
allocate extra 8 bytes at the beginning of each address-taken
object. This extra header is used for storing the metadata,
which is initialized upon the creation of the stack frame (i.e.,
in the prologue of the corresponding function). PTAuth also
needs to instrument address-taken operations on stack objects
to generate AC for the resulting pointers. The authentication
scheme for address-taken objects on stacks and their point-
ers is the same as the scheme for heap objects and pointers.
Finally, PTAuth needs to invalidate all metadata of address-
taken objects in a function epilogue, similar to what it does
upon heap object deallocations.

PAC instructions: In the current implementation, we have
used both PAC instructions and the software emulated imple-
mentation of the instructions. We used the FVP simulator to
run the PAC instruction. However, FVP is not a performance
aware simulator. It does not model cycle timing and all the
instructions are executed in one processor clock cycle [21].
We also observed that large benchmarks halt the FVP which
prevented us from running performance experiments on it.
Since A12 Soc is proprietary and there is no public SoC avail-
able to test the implementation, the reported runtime overhead
is anticipated to be different in real hardware. In other words,
the actual PAC instructions are expected to be faster than the
software emulated instructions.

We leave these limitations for future work when the real
hardware is available.

8 Related work

Safe C: Memory corruption bugs are highly diverse and com-
monly targeted by software attacks [61]. Prior work intro-
duced memory safety to the C language via a safe type sys-
tem [39, 42, 50, 60]. These safe languages are immune to
temporal vulnerabilities. However, they either impose a sig-
nificant amount of memory and runtime overhead or they are
not applicable to protect legacy C/C++ codes. For instance,
Cyclone [42] is a safe dialect of C which is is not applicable
to protect legacy codes. It is no longer supported but sev-
eral ideas of Cyclone have been implemented in Rust [2, 6].
CCured needs some annotations by the programmer. It also
uses fat pointers to store metadata which breaks the applica-
tion binary interface (ABI).
Safe memory allocator: These systems prevent allocated
objects from ending up at the same address of freed objects
[29,31,52,59]. For instance, DieHard [31] and DieHarder [52]
randomize the locations of allocated objects in the heap and
consequently provides probabilistic temporal memory safety
(i.e., making object reuse or replacement difficult). Partition-
Alloc [5] and Internet Explorer isolated heap [7] allocators
prevent memory reuse by allocating objects of different types
or sizes in separate buckets. Although these schemes have
low runtime overhead, it has been shown that they can be by-
passed on targeted attacks [11,41]. Moreover, they suffer from
a huge memory overhead caused by memory fragmentation.
Memory error detectors: Memory error detectors [34, 51,
56] are widely used among developers. However, due to the
high overhead, they are only suitable for debugging or non-
production use. AddressSanitizer [56] is a memory error de-
tector that creates shadow memory and red zones around
objects. It detects out-of-bounds accesses in heap, stack, and
global objects, as well as use-after-free bugs. However, it pro-
vides a probabilistic detection system for use-after-free bugs
which is susceptible to bypass [63].
Pointer invalidation: Another line of work focused on
pointer invalidation. DangNull [44], DangSan [62], FreeSen-
try [65] and pSweeper [46] explicitly invalidate all the point-
ers to an object when the lifetime of the object is finished.
CRCount [58] uses a reference counting approach for count-
ing the number of pointers to an object. When there is no
pointer to an object, then it is freed. In this approach, the
pointers are invalidated implicitly during the runtime of the
program. This approach suffers from memory leak issue since
some pointers are never invalidated. Consequently, the ob-
jects will reside in memory for a long time. In general, pointer
invalidation systems need to keep a huge amount of metadata
in the memory to track the relationship between pointers and
objects. Inevitably, those metadata are prone to corruption.
Pointer dereference validation: Some other approaches sim-
ilar to our design, detect and prevent temporal corruption bugs
by pointer dereference validation [35, 49, 64]. CETS [49] pro-



vides temporal safety by assigning a unique identifier to each
object and its pointers. The main challenge in this scheme
is that extra metadata for the pointers should be stored in
the memory. Also, a unique identifier should be assigned to
each object and its pointers. Since these metadata are stored
disjointly, obtaining these information efficiently during the
runtime is challenging. In order to tackle this problem, in
our design, we proposed an inline metadata scheme for both
pointers and objects. However, inline metadata is prone to
corruption by linear overflow. To address this problem, we
used PAC to guarantee the integrity of the metadata before
using them. To sum up, our approach reduces the high look-up
table costs for loading the metadata and provides integrity of
the metadata in a unified design.

Hardware-assisted schemes: Similar to PTAuth, there are
some approaches that take advantage of hardware to pro-
vide temporal safety. Oscar [37], which is the following work
of [38], is a page permission-based scheme to prevent tem-
poral memory safety violations in the heap. Basically, Oscar
improves the original idea of allocating each object in a sepa-
rate page (similar to PageHeap and Electric Fence [3, 4]) to
prevent UAF vulnerabilities.

Another line of work relies on hardware to provide spatial
and temporal protections. Hardware-assisted AddressSani-
tizer (HWASAN) [14, 57] is the following work of Address-
Sanitizer. HWASAN uses address tagging feature [1] to im-
plement a memory safety tool, similar to AddressSanitizer.
Memory Tagging Extension (MTE) [17] has been introduced
in ARMv8.5 for providing spatial and temporal safety. How-
ever, the hardware is not available yet. Intel MPX [53] was
introduced by Intel to provide spatial safety. However, due to
the high-overhead, it was discontinued by the maintainers.

9 Conclusion

We presented a resilient and efficient points-to authentica-
tion scheme called PTAuth, for detecting temporal memory
corruptions. By defining the authentication codes (AC) for
pointers, our scheme allows for convenient and simultaneous
checking of metadata integrity and identities when they are
being accessed. The unified verification of the two properties
(integrity and identity) enables the unified detection of all
kinds of temporal memory corruptions in the heap. PTAuth
uses PAC on ARMv8.3-A as a basic encryption/signing prim-
itive during AC calculation, which is fast and secure thanks
to the hardware-level support. PTAuth contains: (i) a cus-
tomized compiler for instrumenting programs with necessary
inline checks, (ii) a runtime library for AC generation and
authentication, and (iii) a set of OS patches for PAC-related
CPU configuration. Our evaluation on 150 vulnerable pro-
grams shows that PTAuth detects all 3 categories of temporal
memory corruptions with a runtime overhead of 26% (using
software-based PAC) and 2% memory overhead.

Acknowledgment

The authors would like to thank the anonymous reviewers for
their help with the revision of this paper. This project was
supported by the Office of Naval Research (Grant#: N00014-
18-1-2043 and N00014-17-1-2891) and the Army Research
Office (Grant#: W911NF-18-1-0093). Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the
views of the funding agencies.

References

[1] Arm Cortex-A Series Programmer’s Guide for Armv8-
A. http://infocenter.arm.com/help/index.
jsp?topic=/com.arm.doc.den0024a/ch12s05s01.
html.

[2] Cyclone is a safe dialect of C. https://cyclone.
thelanguage.org/.

[3] Electric Fence. https://elinux.org/index.php?
title=Electric_Fence&oldid=369914.

[4] Microsoft. GFlags and PageHeap. https:
//docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/gflags-and-
pageheap.

[5] PartitionAlloc Design. https://chromium.
googlesource.com/chromium/src/+/master/
base/allocator/partition_allocator/
PartitionAlloc.md.

[6] Rust. https://www.rust-lang.org/.

[7] Understanding IE’s New Exploit Mitigations: The
Memory Protector and the Isolated Heap. https:
//securityintelligence.com/understanding-
ies-new-exploit-mitigations-the-memory-
protector-and-the-isolated-heap/.

[8] ISO/IEC 9899 - Programming languages - C.
http://www.open-std.org/jtc1/sc22/wg14/www/
docs/n1124.pdf, 2005.

[9] ASLR Bypass Apocalypse in Recent Zero-Day Ex-
ploits. https://www.fireeye.com/blog/threat-
research/2013/10/aslr-bypass-apocalypse-in-
lately-zero-day-exploits.html, 2013.

[10] Armv8-A architecture: 2016 additions. https:
//community.arm.com/processors/b/blog/
posts/armv8-a-architecture-2016-additions,
2016.



[11] Life After the Isolated Heap. https:
//googleprojectzero.blogspot.com/2016/
03/life-after-isolated-heap.html, 2016.

[12] PAC:Pointer Authentication Code. https:
//community.arm.com/groups/processors/
blog/2016/10/27/armv8-a-architecture-2016-
additions, 2016.

[13] Technical Analysis of the Pegasus Exploits on
iOS. https://info.lookout.com/rs/051-ESQ-
475/images/pegasus-exploits-technical-
details.pdf, 2016.

[14] Hardware-assisted AddressSanitizer De-
sign. https://clang.llvm.org/docs/
HardwareAssistedAddressSanitizerDesign.
html, 2017.

[15] Linux kernel patch for PAC instructions. https:
//lore.kernel.org/lkml/1491232765-32501-1-
git-send-email-mark.rutland@arm.com/T/#u,
2017.

[16] Pointer Authentication on ARMv8.3. https:
//www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-
3.pdf, 2017.

[17] Arm A-Profile Architecture Developments 2018:
Armv8.5-A. https://community.arm.com/
processors/b/blog/posts/arm-a-profile-
architecture-2018-developments-armv85a,
2018.

[18] ARM Architecture Reference Manual ARMv8
for ARMv8-A architecture profile. https:
//static.docs.arm.com/ddi0487/da/DDI0487D_
a_armv8_arm.pdf, 2018.

[19] Boot wrapper for Aarch64. https://git.kernel.
org/pub/scm/linux/kernel/git/mark/boot-
wrapper-aarch64.git/commit/, 2018.

[20] Exception mask registers. https://developer.arm.
com/docs/100688/0100/armv8-m-architecture-
technical-overview/programmers-model/
exception-mask-registers, 2018.

[21] Fast Models Reference Manual Version 10.2.
https://developer.arm.com/docs/dui0834/
j/versatile-express-model/differences-
between-the-ve-hardware-and-the-system-
model/restrictions-on-the-processor-models,
2018.

[22] Fixed Virtual Platforms. https://developer.arm.
com/products/system-design/fixed-virtual-
platforms, 2018.

[23] iOS Security, iOS 12.1. https://www.apple.com/
business/site/docs/iOS_Security_Guide.pdf,
2018.

[24] LLVM Project. https://llvm.org/, 2018.

[25] Developments in the Arm A-Profile Architec-
ture: Armv8.6-A. https://community.arm.
com/developer/ip-products/processors/b/
processors-ip-blog/posts/arm-architecture-
developments-armv8-6-a, 2019.

[26] SockPuppet: A Walkthrough of a Kernel Exploit for
iOS 12.4. https://googleprojectzero.blogspot.
com/2019/12/sockpuppet-walkthrough-of-
kernel.html, 2019.

[27] A survey of recent iOS kernel exploits. https:
//googleprojectzero.blogspot.com/2020/06/a-
survey-of-recent-ios-kernel-exploits.html,
2020.

[28] Memory safety in the Chromium project.
https://www.chromium.org/Home/chromium-
security/memory-safety, 2020.

[29] Periklis Akritidis. Cling: A memory allocator to mitigate
dangling pointers. In USENIX Security Symposium,
pages 177–192, 2010.

[30] Roberto Avanzi. The qarma block cipher family. IACR
Transactions on Symmetric Cryptology, 2017(1):4–44,
2017.

[31] Emery D Berger and Benjamin G Zorn. Diehard: prob-
abilistic memory safety for unsafe languages. In Acm
sigplan notices, volume 41, pages 158–168. ACM, 2006.

[32] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David
Mazières, and Dan Boneh. Hacking blind. In 2014
IEEE Symposium on Security and Privacy, pages 227–
242. IEEE, 2014.

[33] Paul E Black. Juliet 1.3 test suite: Changes from 1.2.
Technical report, 2018.

[34] Derek Bruening and Qin Zhao. Practical memory check-
ing with dr. memory. In Proceedings of the 9th Annual
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, pages 213–223. IEEE Computer
Society, 2011.

[35] Nathan Burow, Derrick McKee, Scott A Carr, and Math-
ias Payer. Cup: Comprehensive user-space protection
for c/c++. In Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security, pages
381–392. ACM, 2018.



[36] Juan Caballero, Gustavo Grieco, Mark Marron, and An-
tonio Nappa. Undangle: early detection of dangling
pointers in use-after-free and double-free vulnerabilities.
In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, pages 133–143. ACM,
2012.

[37] Thurston HY Dang, Petros Maniatis, and David Wag-
ner. Oscar: A practical page-permissions-based scheme
for thwarting dangling pointers. In 26th USENIX Secu-
rity Symposium (USENIX Security 17), pages 815–832,
2017.

[38] Dinakar Dhurjati and Vikram Adve. Efficiently detect-
ing all dangling pointer uses in production servers. In
International Conference on Dependable Systems and
Networks (DSN’06), pages 269–280. IEEE, 2006.

[39] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve.
Safecode: enforcing alias analysis for weakly typed lan-
guages. In ACM SIGPLAN Notices, volume 41, pages
144–157. ACM, 2006.

[40] Alessandro Di Federico, Amat Cama, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
How the ELF ruined christmas. In 24th USENIX Secu-
rity Symposium (USENIX Security 15), pages 643–658,
2015.

[41] Abdul-Aziz Hariri, Simon Zuckerbraun, and Brian
Gorenc. Abusing silent mitigations. BlackHat USA,
2015.

[42] Trevor Jim, J Gregory Morrisett, Dan Grossman,
Michael W Hicks, James Cheney, and Yanling Wang.
Cyclone: A safe dialect of c. In USENIX Annual Techni-
cal Conference, General Track, pages 275–288, 2002.

[43] William Landi. Undecidability of static analysis. ACM
Lett. Program. Lang. Syst., 1(4):323–337, December
1992.

[44] Byoungyoung Lee, Chengyu Song, Yeongjin Jang,
Tielei Wang, Taesoo Kim, Long Lu, and Wenke Lee.
Preventing use-after-free with dangling pointers nullifi-
cation. In NDSS, 2015.

[45] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, Jan-Erik Ekberg, and N Asokan. PAC
it up: Towards pointer integrity using ARM pointer
authentication. In 28th USENIX Security Symposium
(USENIX Security 19), pages 177–194, 2019.

[46] Daiping Liu, Mingwei Zhang, and Haining Wang. A
robust and efficient defense against use-after-free ex-
ploits via concurrent pointer sweeping. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 1635–1648. ACM,
2018.

[47] Santosh Nagarakatte, Milo MK Martin, and Steve
Zdancewic. Everything you want to know about pointer-
based checking. In LIPIcs-Leibniz International Pro-
ceedings in Informatics, volume 32. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

[48] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,
and Steve Zdancewic. SoftBound: Highly compatible
and complete spatial memory safety for C. In ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI), 2009.

[49] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. Cets: compiler enforced temporal
safety for c. In ACM Sigplan Notices, volume 45, pages
31–40. ACM, 2010.

[50] George C Necula, Jeremy Condit, Matthew Harren,
Scott McPeak, and Westley Weimer. Ccured: type-
safe retrofitting of legacy software. ACM Transactions
on Programming Languages and Systems (TOPLAS),
27(3):477–526, 2005.

[51] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. In ACM Sigplan notices, volume 42, pages 89–
100. ACM, 2007.

[52] Gene Novark and Emery D Berger. Dieharder: securing
the heap. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 573–584.
ACM, 2010.

[53] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia,
Pascal Felber, and Christof Fetzer. Intel mpx explained:
A cross-layer analysis of the intel mpx system stack. In
Abstracts of the 2018 ACM International Conference on
Measurement and Modeling of Computer Systems, SIG-
METRICS ’18, pages 111–112, New York, NY, USA,
2018. ACM.

[54] Phantasmal Phantasmagoria. The Malloc Malefi-
carum. https://dl.packetstormsecurity.net/
papers/attack/MallocMaleficarum.txt, 2005.

[55] G. Ramalingam. The undecidability of aliasing. ACM
Trans. Program. Lang. Syst., 16(5):1467–1471, Septem-
ber 1994.

[56] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer: A
fast address sanity checker. In USENIX Annual Techni-
cal Conference, pages 309–318, 2012.

[57] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyap-
nikov, Vlad Tsyrklevich, and Dmitry Vyukov. Memory
tagging and how it improves c/c++ memory safety. arXiv
preprint arXiv:1802.09517, 2018.



[58] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil
Cho, and Yunheung Paek. Crcount: Pointer invalida-
tion with reference counting to mitigate use-after-free
in legacy c/c++. In NDSS, 2019.

[59] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang
Lin, and Tongping Liu. Freeguard: A faster secure heap
allocator. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2389–2403. ACM, 2017.

[60] Matthew S Simpson and Rajeev K Barua. Memsafe:
ensuring the spatial and temporal memory safety of c at
runtime. Software: Practice and Experience, 43(1):93–
128, 2013.

[61] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. Sok: Eternal war in memory. In 2013 IEEE
Symposium on Security and Privacy, pages 48–62. IEEE,
2013.

[62] Erik Van Der Kouwe, Vinod Nigade, and Cristiano Giuf-
frida. Dangsan: Scalable use-after-free detection. In
Proceedings of the Twelfth European Conference on
Computer Systems, pages 405–419. ACM, 2017.

[63] Eric Wimberley. Bypassing addresssanitizer.
https://dl.packetstormsecurity.net/papers/
general/BreakingAddressSanitizer.pdf, 2013.

[64] Suan Hsi Yong and Susan Horwitz. Protecting c pro-
grams from attacks via invalid pointer dereferences. In
ACM SIGSOFT Software Engineering Notes, volume 28,
pages 307–316. ACM, 2003.

[65] Yves Younan. Freesentry: protecting against use-after-
free vulnerabilities due to dangling pointers. In NDSS,
2015.

Appendix A Distribution of Runtime Over-
heads

Figure 13 shows the distribution of runtime overheads ob-
tained by running PTAuth 10 times on all the benchmarks.
The green triangles indicate the mean and the red numbers are
the standard deviation. Note that the box plots do not use the

same scale because the overhead varies significantly across
the benchmarks. The standard deviation on all benchmarks
are fairly low (i.e., less than 0.6%), indicating that the over-
head values distribute closely around the mean. This result
confirms that the overhead result is reliable.

Figure 13: Distribution of PTAuth’s runtime overhead on different bench-
marks. Per-benchmark scales are used to clearly show the overhead distribu-
tion on each individual benchmarks.


