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ABSTRACT
Without violating existing app security enforcement, malicious mod-
ules inside apps, such as a library or an external class, can steal pri-
vate data and abuse sensitive capabilities meant for other modules
inside the same apps. These so-called “module-level attacks” are
quickly emerging, fueled by the pervasive use of third-party code in
apps and the lack of module-level security enforcement on mobile
platforms.

To systematically thwart the threats, we build CASE, an auto-
matic app patching tool used by app developers to enable module-
level security in their apps built for COTS Android devices. During
runtime, patched apps enforce developer-supplied security policies
that regulate interactions among modules at the granularity of a
Java class. Requiring no changes or special support from the An-
droid OS, the enforcement is complete in covering inter-module
crossings in apps and is robust against malicious Java and native
app modules. We evaluate CASE with 420 popular apps and a set
of Android’s unit tests. The results show that CASE is fully compat-
ible with the tested apps and incurs an average performance over-
head of 4.9%.

1. INTRODUCTION
Mobile operating systems, including Android and iOS, enforce

application-level sandbox, which assigns each app a separate se-
curity identity and maintains proper isolation among apps. While
effectively mitigating attacks among apps, the existing sandbox be-
comes useless in face of the emerging in-app threats, whereby a
module of an app, such as a third-party library or an external class,
adversely affects the rest of the app or manipulates the underlying
OS. For instance, a recent study [21] found that, in both Android
and iOS apps, some popular advertisement libraries turned rogue
and have been stealing user private information. Another report [1]
revealed that more than 18,000 Android apps covertly upload SMS
messages from mobile devices to remote servers, unbeknown to
users and even app developers, caused by a widely used in-app
payment library. In-app threats also lead to the formation of mobile
botnets and use native code for hiding the malicious activities [12].

We refer to this type of attacks as “module-level attacks”, where
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a module can be as small as a class inside an app. Such attacks are
hardly detectable because they do not violate the existing security
enforcement mechanisms on mobile platforms, which operate at
the application level and cannot distinguish app modules. Module-
level attacks are also difficult to prevent. App developers often have
to blindly trust external code and libraries included in their apps
due to the incapability of imposing separate security restrictions
on them. These attacks have been quickly emerging and evolving
as the integration of external SDKs and libraries becomes nearly
universal in mobile app development.

Previous research studied certain instances of module-level at-
tacks, but failed to cover the entire class of attacks. Some of the
proposed solutions isolate a particular type of malicious module,
such as advertisement or JNI libraries [18, 16, 20], in ways inap-
plicable to other types of malicious modules. Other solutions intro-
duce component-awareness to the Android permission checks [23]
but cannot control interactions among components. Besides, the
proposed mitigations only apply to coarse-grained app modules,
such as a compilation unit. They also require changes to Android
OS, which impedes wide adoption in the largely fragmented An-
droid market.

To fully prevent module-level attacks, we propose CASE (Com-
prehensive Application Security Enforcement), an automatic app
patching tool for app developers to enable module-level security
in their apps built for COTS Android devices (i.e., no OS or mid-
dleware changes are needed). CASE’s enforcement recognizes app
modules at a very fine granularity: a class for Java code or a JNI
library for native code. In patched apps, each app module can have
its own security identity and developer-defined security policies are
enforced on a per-module basis, for example, “module A cannot ac-
cess or reflect on any field or method of module B” or “module A
cannot use permission P assigned to the app”, where A can be de-
fined in an untrusted library, B can be a sensitive class, and P can
be solely intended for a special module’s use. To the best of our
knowledge, this fine-grained module-level enforcement is the first
of its kind. It is essential to stop the emerging module-level attacks.

Realizing this enforcement requires mediation of all the possible
channels via which a module may interact with another module or
the underlying system. Realizing this mediation in a complete, ro-
bust, and efficient fashion is quite challenging given the design re-
quirement that, the mediation must operate purely in user space to
avoid modifying Android framework or OS. This requirement not
only rules out OS-level support but also attracts potential manip-
ulations and evasions by malicious code in apps, such as a rogue
library. To overcome these challenges, we first design a novel
module-level mediation scheme for Android apps, namely dual-
layer interception, which checks all cross-module interactions un-
expected to developers. We then propose two self-protection mech-



anisms for the user-space mediation, namely native-safe pages and
concealed handler, which together prevent the most powerful at-
tack permitted in our threat model—arbitrary native code trying to
bypass the mediation.

We build CASE as an automatic app-patching tool that devel-
opers can simply drop in their toolchain. CASE takes a compiled
app as input, along with a developer-supplied policy describing
(dis)allowed inter-module crossings. It then inserts the core medi-
ation library into the app and rewrites the app’s boot routine so that
during runtime the mediation and its self-protection mechanisms
are properly initialized prior to app execution. It finally signs the
patched app with a developer key and produces a releasable pack-
age. The whole process happens without any developer assistance,
such as code annotation or design refactoring, which usually limits
adoption in practice and is error-prone. Since CASE operates di-
rectly on compiled apps without requiring changes to app design,
not only app developers but also IT administrators and security-
savvy app users can employ CASE to protect apps from module-
level attacks (discussed in § 5).

We evaluate CASE in terms of its deployment cost and com-
patibility, security and robustness, and runtime overhead, using
420 popular apps and a set of unit tests. CASE has successfully
prevented all the disallowed inter-module crossings in these tests.
On average, CASE delays app launch by 0.174 seconds, increases
memory usage by 1.19MB, and slows down app execution by 4.93%.
The results indicate that CASE is complete, robust, and efficient for
defending module-level attacks in real-world.

In summary, this work makes the following contributions:

• A study of the emerging module-level attacks, identifying the
demands and challenges for defenses;

• Three novel techniques to achieve complete, robust, and effi-
cient mediation of inter-module crossings in user-space for
Android apps, which defends against the module-level at-
tacks in their most powerful forms;

• A drop-in tool that app developers can easily adopt in their
toolchain to enable module-level security enforcement in new
or existing apps.

The rest of the paper is organized as follows: we discuss the
module-level attacks and explain the defense challenges in §2; we
explain the design of CASE in §3, centering around the three core
techniques; in §4 we share our implementation experience and in-
sights; we report the analysis and evaluation of CASE in §6; we
contrast the related works in §7 and conclude the paper in §8.

2. BACKGROUND

2.1 Example Attacks
We use CamX, a hypothetical camera app, as an example to il-

lustrate module-level attacks and the lack of defense. CamX, in
addition to capturing photos, provides three value-adding features:
image filters, cloud backup, and social network integration. In-
stead of implementing these features by herself, CamX’s developer
imports a 3rd-party Java class that encapsulates the image filters,
along with a JNI library, and uses the SDKs provided by the cloud
and social-network vendors (e.g., Dropbox and Facebook).

Module-level Attacks: As increasingly observed in reality [21, 1,
12], external modules included in apps can be tainted or malicious.
Assuming the image filter class in CamX is harmful, it can freely
access other modules as well as the system resources meant for

these modules. For example, manipulating the integrated SDKs,
the harmful class can steal users’ files in the cloud storage or ma-
nipulate their social network accounts. It can also abuse the camera
or Internet access granted to the app. Leveraging its JNI library, a
malicious module can theoretically access any user-space data or
code loaded in the app’s memory space.

In general, module-level attacks can happen in two forms: module-
to-module and module-to-system. The first form involves a mod-
ule stealing data or abusing code of another module. For instance,
the malicious image filter class in CamX can use Java reflection to
stealthily invoke the file download APIs in the cloud SDK or read
the objects that record user profiles inside the social network SDK.
The malicious class may also invoke the Android framework APIs
for accessing the Internet or the camera. The second form involves
a module directly accessing system-managed resources, including
virtual memory, file systems, and the app runtime. For instance, a
malicious JNI library can scan memory and files for sensitive data.
It also can interfere with the execution of the app’s Java code by
manipulating the virtual machine.

Although gradually gaining attention among app developers and
users, module-level attacks remain largely unstoppable because the
existing security mechanisms on mobile platforms treat apps as the
minimum security entities and cannot regulate or recognize app
modules.

2.2 Defense: Requirements and Challenges
Defending against the emerging module-level attacks demands

a new layer of security enforcement, on top of the conventional
per-app enforcement, that acts on individual modules inside apps.
To support modules of various sizes and types, the new enforce-
ment has to allow modules to be defined at a fine granularity, such
as a Java class. It must intercept and mediate all instances of the
module-to-module and module-to-system interactions in an app that
may lead to module-level attacks. The enforcement should not re-
quire changes to mobile OS or middleware, which are known to
severely slow down and limit real-world adoption, needless to say
enlarging the already bloated system software layer on mobile plat-
forms. While operating in the user space, the enforcement needs to
protect itself against malicious modules (either Java or native code)
running inside same apps.

To meet the above requirements, a potential module-level secu-
rity enforcement must overcome the following challenges:

(C1) Intercept cross-module interactions completely and prac-
tically: There are two typical approaches to security interception:
dynamically monitoring applications at a privileged software layer
(e.g., inside the language runtime or OS), or statically instrument-
ing applications’ code. However, neither meets the aforementioned
requirements. The first approach enjoys a full view and control
of application execution, but it requires changes to system soft-
ware. The second approach, though only modifying applications,
cannot provide complete interception, particularly in cases where
malicious code use obfuscation techniques to confuse and evade
static instrumentation. Therefore, a new interception mechanism is
needed for capturing all cross-module interactions, such as a reflec-
tive field read or an API invocation. However, the language runtime
or OS does not explicitly track these interaction, and worse, mali-
cious modules may obscure them.

(C2) Prevent implicit module crossing: Though not ubiquitous
used, native code (in the form of JNI libraries) is commonly found
in popular Android apps [20]. Such code can directly access the vir-
tual memory of the containing app, including the regions where the
language runtime (e.g., Dalvik VM) saves its internal data, such as



the class definitions and the raw representations of objects. There-
fore, malicious native code can stealthily manipulate other app mod-
ules via direct memory access. For instance in CamX, to access the
Java object storing the session key in the social network SDK, the
malicious JNI code can locate the raw object in memory and then
retrieve its sensitive data fields. Such cross-module access is im-
plicit in that it happens at the virtual memory level without involv-
ing the Dalvik VM. Although implicit module crossing in itself rep-
resents a security violation (i.e., abusing VM’s internal data), pre-
venting it is challenging as it requires protection over VM’s mem-
ory regions against malicious code running in the same process at
the same privilege level as the VM.

(C3) Protect interception mechanism in user space: A malicious
module may attempt to subvert the user-space interception mecha-
nisms in the following ways. First, it may tamper with the “hooks”
that the interception mechanism places in memory, such as those
in the Global Offset Tables (GOTs) and the function preambles.
The hooks redirect code executions to security checks before al-
lowing them to enter any sensitive routines (e.g., accessing a pro-
tected module). If malicious code reverts or removes the hooks, it
bypasses the security checks entirely. Second, a malicious mod-
ule may locate the sensitive routines in memory and directly in-
voke them, evading any hooks and security checks. Third, even
if the hooks are protected and the sensitive routines are hidden, a
malicious module may direct code executions to the locations im-
mediately following the successful checks, as if the executions un-
derwent the hooks and passed the security checks. Therefore, a
robust interception mechanism needs to protect its own data and
code (e.g., hooks and security checks) from app code sharing the
same memory space.

3. ENABLING MODULE-LEVEL SECURITY

3.1 CASE Overview
To stop the emerging module-level attacks, we build CASE, which

enables security regulations on individual modules inside Android
apps. CASE is intended primarily for app developers’ use. It en-
forces developer-supplied security policies that describe (dis)allowed
cross-module interactions. CASE identifies app modules at the gran-
ularity of a class (Java code) or a JNI library (native code). CASE
mediates both module-to-module (e.g., reading a member field of a
different class) and module-to-system (e.g., making a direct system
call) access during an app execution. Rather than modifying the
Android Framework or OS, CASE retrofits the module-level secu-
rity enforcement into apps via automatic app patching. This design
has two main advantages: first, it makes CASE compatible with
all COTS Android devices and thus is readily deployable; and sec-
ond, it minimizes developers’ assistance and thus is easily adopt-
able (i.e., developers only need to provide desired policies without
having to modify app code or understand the enforcement mecha-
nism).

Threat Model: We adopt a threat model that is both realistic and
permissive in the context of defending module-level attacks. We
trust the OS as it is locked via hardware features on COTS mobile
devices. Although malicious apps may in theory comprise the OS
by exploiting rare vulnerabilities, such apps are out of scope for
this work because module-level attacks become pointless in these
apps. On the other hand, we assume the existence of the most pow-
erful app-level adversaries. The adversaries can gain full control
over one or more modules in an app and aim at: (i) penetrating
into a sensitive module in the app; (ii) abusing the privileges and
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Figure 1: CASE workflow: static patching phase (left) and dynamic
enforcement phase (right)

resources granted to the entire app. Tainted or malicious modules
can contain arbitrary Java and native code, which is loaded inside
the same app VM and process as the targeted modules as well as
CASE.

Workflow: CASE consists of two main components, an automatic
app patcher and a runtime enforcement library, which function in
the app building phase and app execution phase, respectively (Fig-
ure 1). In the first phase, the CASE patcher, streamlined in the
app building toolchain, takes as input the compiled app executable
and the developer-supplied policies. The patcher checks the native
library, if any, in the executable for disallowed instructions (ex-
plained in § 3.4). It then injects the policies and the CASE en-
forcement library into the app package. Subsequently, the patcher
rewrites the app boot routine so that the self-initialization of the en-
forcement library is always performed prior to the original startup
sequences of the app. The patcher finally signs the app using the
developer’s key and produces a releasable app package.

The second phase starts when the patched app is launched and
CASE’s self-initialization is triggered. The initialization sets up
the interception mechanism for cross-module interactions (§ 3.3).
Additionally, it enables the protection measures for the intercep-
tion mechanism to prevent evasions and tampering by malicious
modules in the app (§ 3.4 and 3.5). During the app execution, the
enforcement library monitors every cross-module interaction that
warrants a check as described by the policies. It denies any forbid-
den module crossings and alarms the app user of the event.

3.2 Overall Design and Rationale
CASE addresses the open problem of “completely and robustly

mediating cross-module interactions”. We achieve completeness
using a mechanism called the dual-layer interception. It was driven
by our observation that, module crossings can happen at two or-
thogonal layers: (i) the VM layer where the module-to-module in-
teractions happen; (ii) the system call layer where the module-to-
system interactions happen. Module-to-module interactions trig-
ger the VM internal functions in charge of class resolution or JNI
transition; similarly, module-to-system interactions trigger system
calls. By interposing a set of selected VM internal functions and
system call interfaces, the dual-layer interception monitors all mod-
ule crossings encountered during an app execution. Without re-
quiring any support from the VM or the OS, the CASE enforce-
ment library realizes the function interposition via in-memory code
patching and GOT hooking. The details about the set of interposed
functions and the interposition techniques are explained in § 3.3.

To ensure the robustness of the interception against malicious
modules, we introduce two protection measures, namely the native-
safe pages and the concealed handler. The former prevents evasion



of the interception and the latter protects the interception mecha-
nism against tampering.

To evade dual-layer interception, a sophisticated malicious mod-
ule may perform implicit module crossing by sidestepping the VM
or the regular system call interface, and therefore, avoids the inter-
posed functions. Specifically, malicious native code can directly lo-
cate and parse the raw presentation of a Java object in memory, and
in turn, manipulate the member fields or methods in a VM-agnostic
fashion. The malicious module can also make implicit system calls
by locating and jumping to the system call entry points without ex-
plicitly invoking the interposed system call wrappers. We design
the native-safe pages to prevent implicit module crossing. The key
rationale behind the design is that implicit module crossing can-
not succeed without direct memory access to VM’s internal data or
system call entry points. The native-safe pages are regular memory
pages with special page-level protection attributes dynamically set
by the CASE enforcement library. Allocating VM’s internal data in
the native-safe pages prevents direct access by app code. Keeping
system call wrappers and entry points in the native-safe pages hides
them from direct execution.

In addition to evasion, tampering is the other way to bypass the
interception. Since operating in user space, a malicious module
may directly abuse CASE’s internal data and code. For instance, it
can try to overwrite memory data critical to the interception, includ-
ing the policy rules and internal states. It may also try to manip-
ulate CASE’s interception routines, such as bypassing the security
checks. To prevent potential subverting of CASE, we introduce two
security properties, namely interception integrity and interception
invisibility, which apply to CASE’s internal data and code, respec-
tively. The intuition is that no tampering is possible if malicious
code cannot modify the internal data or observe (find in memory)
the internal code.

To achieve interception integrity, the CASE enforcement library
write-protects the memory pages for its static data and function
hooks (both GOTs and patched code) during the self-initialization
phase. Malicious code cannot override this page protection thanks
to the system call interception. To achieve interception invisibil-
ity, CASE uses a novel invocation mechanism for stealthily invok-
ing its interception routines. The mechanism, called the concealed
handler, repurposes the standard POSIX signal handling to hide
sensitive code in user space memory while allowing other code to
invoke the hidden code without knowing its address. Using the
concealed handler, CASE hides its interception routines and other
internal code that app code must not directly call or partially exe-
cute.

Next, we delve into the detailed design and usage of CASE’s
three core techniques: the dual-layer interception, the native-safe
pages, and the concealed handler. We explain how they tackle the
major challenges associated with enforcing module-level security
in user space (§ 2.2).

3.3 Dual-layer interception
A key insight that inspired the dual-layer interception is that, de-

spite their large variety, inter-module crossings in apps take place
at either of the two software boundaries: the boundary between two
modules (e.g., when accessing data or code in a object of a different
class) and the boundary between a module and the underlying OS
(e.g., when accessing IPC, network, or hardware sensors), as illus-
trated in Figure 2. To capture all inter-module crossing that warrant
security checks, the dual-layer interception covers a set of selected
functions located at either the language runtime layer or the system
call layer. We refer to the set of functions as MinSet (Table 1).
Derived from our manual examination of all Dalvik internal APIs
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Figure 2: The dual-layer interception

for class and JNI management, MinSet represents the minimum
set of functions that either module-to-module or module-to-system
crossings have to trigger.

Table 1: Functions in MinSet

Function Library Purpose
ioctl libc IPC interception
open libc file system isolation
link libc file system isolation

unlink libc file system isolation
connect libc socket access
dlopen linker self-protection
dlclose linker self-protection
dlsym linker self-protection
mmap libc self-protection

mremap libc self-protection
munmap libc self-protection
mprotect libc self-protection

fork libc process management
execve libc process management

dvmPlatformInvoke libdvm JNI interception
*Method_invokeNative libdvm reflection interception

*Constructor_constructNative libdvm reflection interception
*Field_getField libdvm reflection interception
*Field_setField libdvm reflection interception

*Field_getPrimitiveField libdvm reflection interception
*Field_setPrimitiveField libdvm reflection interception

dvmLookupClass libdvm class managing
loadClassFromDex0 libdvm class managing

dvmFindPrimitiveClass libdvm class managing
findMethodInListByDescriptor libdvm class managing

findMethodInListByProto libdvm class managing
dvmFindVirtualMethodByName libdvm class managing

dvmFindStaticField libdvm class managing
dvmFindInstanceField libdvm class managing

sigaction libc self-protection
* denoting the common prefix “Dalvik_java_lang_reflect_”.

At the system call layer, MinSet contains the system call wrap-
pers that apps use for accessing system-managed resources, includ-
ing open for file systems and sensors, ioctl for driver-exposed
interfaces and Binder IPC, socket and connect for sockets and
network. Intercepting these system calls allows for full media-
tion of a module’s access to system-managed resources. In ad-
dition, MinSet also contains a few system calls that are not di-
rectly related to enforcing security policies but critical for prevent-
ing attacks against CASE. These include mmap and mprotect for
memory management and protection (e.g., write-protecting tram-
poline code, GOTs, and policy rules), and sigaction for exclu-
sively handling the sensitive signals as the concealed handler re-
quires (§3.5). Unlike the previous works that intercept system calls
enforcing security policies [25], our interception is immune from
malicious native code running in the same process. Besides, it also



mediates module-to-module interactions, which no previous work
has achieved.

At the language runtime layer, MinSet contains selected APIs
from two Android runtime libraries, namely the Dalvik VM (libdvm)
and the dynamic linker and loader (linker). The selected internal
APIs in libdvm are used by the VM whenever an object’s mem-
ber fields and methods are being accessed or when a JNI library is
being invoked. Intercepting these APIs allows for security checks
on all kinds of module-to-module interactions inside apps. On the
linker’s side, MinSet contains APIs for dynamically loading ex-
ecutables and looking up symbols in loaded executables, such as
dlopen and dlsym. Intercepting the linker APIs is necessary for
covering newly loaded modules and securing loaded modules, in-
cluding the CASE enforcement library.

CASE additionally employs standard function interception meth-
ods, namely GOT hooking and dynamic binary patching. The for-
mer is used whenever applicable whereas the latter is needed when
an interception target is a private API or does not have an exported
symbol (i.e., the target does not have any GOT entry). Although
these interception methods have been widely used, they are intrinsi-
cally vulnerable in adversarial environments as the one CASE faces
(e.g., sharing a memory space with untrusted or malicious native
code). Our key contribution to the interception methods lies in the
self-protection techniques that make them robust against powerful
adversaries (e.g., malicious code running inside the same process).

The dual-layer interception overcomes the challenge C1, acting
as the underpinnings to enable CASE’s complete module-level se-
curity mediation.

3.4 Native-safe pages
A malicious module may bypass the dual-layer interception via

implicit module crossing, whereby it interacts with the OS or an-
other module without using or triggering the functions in MinSet.
For instance, a malicious module can directly initiate a system call
by jumping to the system-entering instructions (e.g.,SYSENTER
and SWI) inside the system call wrappers in libc. It may also
directly read and parse the VM’s internal data in memory without
using any VM APIs, and in turn, inspect another module. In gen-
eral, implicit module crossing is possible because native code in
apps can execute arbitrary instructions and has unchecked access
to an app’s entire user-space memory. Benign apps never need to
carry out implicit module crossing.

To prevent implicit module crossing, we introduce the native-
safe pages. By converting the memory pages where the system
call wrappers and the VM internal data reside into the native-safe
pages, the CASE enforcement library ensures that apps’ native code
cannot directly execute or access the system call wrappers and the
VM internal data. The native-safe pages are built on the basic page-
level memory protection without affecting app’s normal function-
ing. They switch to enforcement mode only for the duration of
JNI execution and remain in permissive mode (i.e., no performance
overhead) otherwise. CASE supports two types of native-safe pages
(Figure 3):

Native-safe pages for system call wrappers: These pages store
and protect the default system call wrappers. Since they are fre-
quently accessed, keeping them locked and only unlock them for
each permitted call can cause significant app delays, even if the
enforcement is not always-on (i.e., only in effect during app na-
tive code execution). Instead of repeatedly locking and unlocking
these pages, our design only performs a single page protection ad-
justment at each switch between the permissive mode and the en-
forcement mode. In permissive mode, these pages are unlocked

and freely accessible. When entering the enforcement mode (i.e.,
switching to JNI execution), CASE locks these pages (i.e., set the
PROT_NONE bit) and duplicates these pages at a hidden and ran-
dom location in memory1, as shown in Figure 3. Every subsequent
system call by the app triggers a page fault, which is transparently
handled by the concealed handler (§ 3.5), where the call undergoes
the security checks and, if passed, is forwarded to the hidden sys-
tem wrappers. This design takes advantage of the self-contained
and location-independent nature of the system call wrappers (i.e.,
they do not reference external code or data via relative offsets, and
therefore, can function normally when relocated to different mem-
ory locations.)

Obviously, the security of this optimization hinges on the confi-
dentiality of the duplicated wrappers’ locations in memory, which
is assured as follows. First, as part of the interception invisibility
enabled by the concealed handler (§ 3.5), the CASE enforcement
library’s internal code and data, including the whereabouts of the
duplicated system call wrappers, are kept secure and secret from
app code. Second, the hidden pages are surrounded by guard pages
that prevent brute-force memory searches by malicious native code.
Without requiring memory locks, the hidden pages remain unreach-
able for all but the checked invocations of system call wrappers.
This design achieves efficient mediation and protection of the sys-
tem call interface.

Using duplicated, hidden system call wrappers also solves two
additional issues, namely cyclic page lock and thread unsafety, that
we would run into if we simply lock the wrappers. First, with-
out duplicated wrappers, no user-space code, including the CASE
enforcement library, can make system calls once the native-safe
pages for the system call wrappers have been locked. As a re-
sult, CASE cannot call mprotect to unlock any native-safe pages
when needed, leaving the app execution in a cyclic lock. Second,
without duplicated wrappers, CASE needs to unlock the native-safe
pages for each checked system call, which exposes the pages and
the system call interfaces to all concurrent threads of the app that
may execute malicious native code.

Native-safe pages for VM internal data: These pages store and
protect the internal data of the VM, including the class hierarchies
and the raw object pools (Figure 3). They ensure that the resident
data are only accessible to the intended code, namely the VM’s in-
ternal APIs. Similar to their counterparts for system call wrappers,
the native-safe pages for VM data are only effective when JNI code
is running and use the basic page-level memory protection but in
a different fashion. These pages are locked prior to any JNI code
execution, which should never directly access data on these pages.
They are unlocked when the app execution switches from JNI back
to Java code.

However, this intuitive form of protection can break normal app
executions when the VM happens to access its data during a page
lockdown. We observe that, the VM may access a locked data
page only when a Java thread is running concurrently with the
thread that triggered the page lock and is running JNI code. CASE
avoids this adverse impact on the VM by interleaving the native
and Java threads. The interleaved executions start when a VM
thread encounters a page fault due to the locked native-safe pages.
CASE immediately suspends the VM thread and let the active native
thread(s) continue. After the native threads return or 100 microsec-
onds (i.e., tuned to Linux’s DEF_TIMESLICE) expire, whichever
comes first, CASE suspends all native threads, unlocks the native-
safe pages, and resumes the previously suspended VM thread. It
repeats the preemption and switches back and forth between Java

1It duplicates the virtual memory mappings rather than the content.



…

ENTRY(__open)
    mov     ip, r7
    ldr     r7, =__NR_open
    swi     #0
    mov     r7, ip
    cmn     r0, #(MAX_ERRNO + 1)
    bxls    lr
    neg     r0, r0
    b       __set_errno
END(__open)

ENTRY(__ioctl)
…

…

(random addr.)

Libdvm:

Libc:

… … 
DvmGlobals (gDvm):
    /* Classes used internally. */
    ClassObject*   classJavaLangObject;
    ClassObject*   classJavaLangString;
    ...
    

/* Bookkeeping data */
    char*           classPathStr;
    GcHeap*         gcHeap;
    Thread*         threadList;
    HashTable*      userDexFiles;
    HashTable*      loadedClasses;    
    HashTable*      nativeLibs;  
    pid_t           systemServerPid;
…

Syscall 
wrappers

Duplicated 
wrappers

R/T internal
Data

        =  native-safe pages

Mem. Layout

        =  guarded hidden pages

Figure 3: The native-safe pages for system call wrappers and the internal data of the runtime

and native threads until the JNI execution finishes or the app enters
the single-thread execution. CASE carries out the thread interleav-
ing and scheduling purely in the user-space by using the SIGSTOP
and SIGCONT signals. It identifies the correct instances to raise
these signals by monitoring an app’s thread creation and JNI invo-
cation, a capability enabled by the dual-layer interception (i.e., it
covers the related system calls and the JNI bridge APIs). Note that
the interleaved execution rarely happens in practice as normal apps’
JNI code are usually single-threaded and invoked synchronously by
Java code. We tested 20 popular apps from Google Play that use
JNI and found none of them triggering the interleaved execution.

With the aforementioned properties, the native-safe pages stop
both forms of implicit module crossing in apps and overcome chal-
lenge C2.

3.5 Concealed handler
The two security properties, interception integrity and invisibil-

ity, guarantee CASE’s robustness against tampering. Interception
integrity is straightforward and achieved by write-protecting the
memory pages for CASE’s static data and code. In comparison,
interception invisibility is challenging because it requires the inter-
ception routines to be hidden and protected from app code, despite
the shared memory address space. CASE achieves interception in-
visibility via the concealed handler.

Using the standard POSIX signals, the concealed handler enables
blind invocation and orderly execution of its (sensitive) code—
untrusted code running in the same process can invoke the con-
cealed handler without knowing its address in memory or influenc-
ing its execution. Since the concealed handler’s code or data are
undiscoverable in memory, malicious code cannot invoke it par-
tially (e.g., jumping to the middle of the function) or out-of-order
(e.g., ROP-style execution), nor access its associated data. In gen-
eral, the concealed handler can be used by many user-space security
enforcement or monitoring systems to create invisible yet invokable
sensitive routines.

To create a concealed handler that encapsulates the sensitive rou-
tines, the CASE enforcement library first allocates two memory
pages at random locations (one for code and one for data) during
its initialization phase. It then loads a master dispatch function, the
sensitive routines, and their associated data to these pages. Next,
the dispatch function is registered as the handler for SIGSEGV (i.e.,
for page faults). In theory, any standard signal suffices, but having
the master function handle the page fault signal allows for tight in-
tegration with the native-safe pages. No pointers to these pages are

saved in use-space memory as they may leak the hidden locations.
Only the OS knows the address to the master dispatcher as the reg-
istered signal handler. The system call interception prevents app
code from reading or changing the handler.

CASE’s concealed handler contains the sensitive routines essen-
tial to its enforcement mechanism, including the resolver for the
hidden system call wrappers and the native thread orchestrator, as
discussed below.

System call wrapper resolver: Resolving the addresses of hid-
den system call wrappers takes place in a transparent fashion: the
caller is neither aware of the indirection (i.e., the system call is ser-
viced by a duplicated wrapper) nor able to extract the address of the
hidden system call wrapper. As shown in the example trampoline
in Figure 4, when the native-safe pages are in permissive mode,
the load instruction loads the address of the original wrapper into
the r7 register (Line m). The register is then used as the control
flow transfer target (Line j), which happens after a successful secu-
rity check. The system call interposition finishes as if the native-
safe pages do not exist. In contrast, when the native-safe pages are
in the enforcement mode, the load instruction on Line n causes a
page fault because the native-safe pages for the original system call
wrappers are now locked. The page fault instantly triggers the con-
cealed handler. Next, the wrapper resolver in the concealed handler
is activated, which looks up the address of the duplicated wrapper
from its secret table stored in the hidden data page. It then loads the
secret address of the hidden wrapper into r7 and finally returns the
control back to the trampoline. The trampoline continues from the
fault instruction (Line n), and if the security check succeeds, jumps
to the address saved in r7 (Line j), which now points to the hidden
wrapper. It is worth noting that, the caller as well as the trampoline
are not aware of the system call redirection and wrapper resolution
process. The design of the trampoline allows for transparent sys-
tem call redirection and resolution, which happen only when the
native-safe pages are locked. The secret value cannot leak because
it is saved only in r7 between Line m and j, where no return or
indirect jump exists that may be exploited.

Native thread orchestrator: This routine is triggered when a page
fault occurs on the native-safe pages where the VM internal data
are stored. The orchestrator first checks if the page fault is caused
by apps’ native code, and if so, terminates the thread and raises an
alert (i.e., app’s code should never directly access the VM internal
data). If the fault occurs on a VM thread, the orchestrator performs



   ENTRY(__open_trampoline)
    …
    /*load original wrapper*/
m:  ldr     r7, =__open
n:  ldr     r7, [r7]
    …
    /*perform checks*/
    …
    /*if checks passed*/
j:  mov     r7, ip
    …
   END(__open_trampoline)

Is page 
locked?

Y

N

Checks

Handler

Call
Atomic

Figure 4: An example system call trampoline, showing the trans-
parent and blind invocation of the wrapper resolution routine (not
shown) in the concealed handler.

the thread interleaving as described in § 3.4. The reason for plac-
ing the orchestrator in the concealed handler is two-fold. First, the
orchestrator needs to perform the sensitive operations (e.g., unlock-
ing the native-safe pages), which are disallowed by the dual-layer
interception if performed outside of the concealed handler. Second,
the sensitive code in the orchestrator must be protected from abuse
by malicious code.

The concealed handler enables the interception invisibility for
CASE and, together with the interception integrity measures, solves
challenge C3.

4. IMPLEMENTATION HIGHLIGHTS
Due to the space constraints, we only highlight the major im-

plementation details that are necessary for others to reproduce and
expand our system.

CASE injection & initialization: CASE is mostly written in C with
a few helper classes in Java (e.g., the call stack dumper for Java
code). It is compiled into a JNI library along with a few Dalvik
class files. Our automatic app patcher employs the widely used
Apktool to inject CASE into an app. The patcher first adds (or
rewrites) a subclass of the android.app.Application in the
app. The subclass is automatically invoked by the OS to initialize
the app itself as well as additional VM instances, if any, created
during the app execution (e.g., an isolatedProcess or a re-
mote service). The Application subclass initializes CASE by
setting up the dual-layer interception, the native-safe pages, and the
concealed handler prior to app code execution. This way, we can
ensure that CASE is always invoked at app entry point and protect
CASE from attacks at the initialization phase. If the app contains
native code, the patcher then verifies that the code does not use sys-
tem call instructions. The verification runs conservatively on am-
biguous instruction sets (e.g.,x86) in favor of soundness: any legit-
imate instruction sequence that starts with a system call instruction
and proceeds to an indirect control transfer is deemed as dangerous
and triggers an alert. The patching process is fairly straightforward
and does not modify the original app code, and therefore, does not
cause compatibility issues or broken apps. The patched app can run
on all the Android versions that the app originally targets.

Since app developers are our main target as the users of CASE,
we allow app developers to provide their own key to sign the app
after the rewriting process. As app developers are expected to have
a good understanding of their own app, as well as the expected
functionality of the untrusted or potentially vulnerable modules,
they are capable of making reasonable policy rules. We also as-
sume that the app developers are able to appropriately handle re-
source access denial, for example, by either notifying the device

users or by silently terminating the app. Although the app needs to
be repackaged if its security policies are updated, we believe such
updates occur far less often than app update itself, and would not
bring noticeable overhead to app’s updating process.

Function call interception: CASE uses two standard dynamic func-
tion call interception techniques, namely GOT hooking and binary
patching. The basic functioning of both techniques are well known.
However, we gained new insights into using the techniques on An-
droid for enforcing security policies.

Our prototype uses GOT hooking for intercepting invocations
of system call wrappers. The technique is particularly convenient
to implement on Android, whose dynamic linker resolves all GOT
entries ahead of time (i.e., no support for lazy binding) and locks
the memory pages afterwards. Therefore, CASE overwrites all the
GOT entries that correspond to the functions in MinSet at once
during the CASE initialization phase without having to force the
linker to resolve the symbols. We also patch any newly loaded
libraries by monitoring all dlopen system calls. Since all system
calls are exported and resolved from GOT at the time of use, we
can easily achieve complete mediation.

On the other hand, since there are no centralized function pointer
tables for VM-level APIs, we choose binary patching to intercept
VM-level APIs in MinSet. Although not as easy to implement, the
binary patching technique offers two unique benefits over the GOT
hooking technique. First, it is quick to apply and takes effect glob-
ally inside a process. For example, patching VM APIs only takes
a linear memory copy (i.e., overwriting the old code page with a
branch instruction to the trampoline) and does not involve any ta-
ble lookups or per-function treatment as GOT hooking does. It is
effective on all upcoming API calls regardless of the calling mod-
ule. Second, it can intercept calls to private functions (in this case,
private VM APIs), which are not exported to GOT at all. These
functions exist because they are supposed to be only used by the
Dalvik VM internally (i.e.,libdvm.so). External API calls are
secured by the native-safe pages.

Native-safe pages: The native-safe pages store the security-critical
resources that do not have any dominant accessors, including sys-
tem call wrappers and the VM’s internal data. The implementation
of the native-safe pages can directly influence the security and ro-
bustness of the entire CASE system. The location of the native-safe
pages for the system call wrappers have to remain undecidable by
adversaries. It is known that, even if ASLR is present, the mem-
ory pages allocated using mmap are typically continuous in virtual
memory and thus deterministic. CASE forces mmap to allocate a
randomly located page sequence by providing a random base ad-
dress in user space and then verifying the allocation result. In ad-
dition, CASE makes the first and the last page in the sequence non-
accessible and uses them as guard pages to prevent linear memory
search by malicious code.

The system call wrappers that are not security-sensitive, but are
located on the same memory pages as functions in MinSet, have
to be handled carefully. We do not monitor these functions, but
since these pages will be locked at the time the execution enters
native threads, we copy them into the native-safe pages as well. We
silently forward the non-sensitive system calls to their counterparts
in the native-safe pages without performing any policy checks. In
addition, the native-safe pages for the internal runtime data have
to cover not only the data regions of libdvm (e.g.,.data and
.bss) that are page aligned, but also the heap area for the VM’s
book-keeping data that is pre-allocated by the Zygote process and
not mixed with apps’ data.



Concealed handler: The concealed handler ensures the hidden
functions and data are not referenced by any user-space pointers.
The hidden code and data pages required by the concealed han-
dler are allocated during the initialization phase in a similar fash-
ion as the native-safe pages for system call wrappers. All global
data items used by concealed handler are organized into an array,
which is always allocated at the beginning of the hidden data page.
The data are referenced via relative offset to the array’s starting ad-
dress, which is also the base address of the hidden data page. This
implementation detail allows for efficient address resolution and
easy data access. Before being mapped to the hidden code page,
the concealed handler’s code is localized with the hardcoded array
address adjusted to the address of the hidden data page. Therefore,
during runtime, concealed handler’s code always finds its data via
simple array indexing.

CASE registers the concealed handler as the handler for the rele-
vant signals, (e.g.,SIGSEGV, SIGSTOP, and SIGCONT). The orig-
inal handlers are saved, and can invoked by the concealed handler
when a signal is not meant to be handled by CASE. This is critical
for preserving Dalvik’s signal handling chains. When a signal is
raised as a result of CASE’s enforcement, concealed handler parses
the ucontext object on the stack, which describes the execution
context when the fault occurred, including the instruction pointer,
the register values, etc. The concealed handler uses the instruction
pointer to determine which routine should handle the signal. It may
also receive implicit parameters from the registers and return val-
ues back by overwriting the registers (e.g., passing the address of a
hidden system call wrapper via the register). All the routines in the
concealed handler are kept short and do not perform asynchronous
operations or raise signals, a requirement imposed by the OS on
signal handlers.

5. DISCUSSION

Policy Specification: This paper focuses on proposing the new
module-level enforcement mechanism while leaving the formal spec-
ification and automatic generation of policies for future work. How-
ever, for the sake of demonstration, we include below a basic lan-
guage specification that we currently use to compose policies for
CASE:

Rule::= {Sub Op Obj Cond}
Sub ::= class_ID|JNI_lib_name
Op  ::= read|write|execute
Obj ::= {sys_resource|vm_resource} x Mod
Mod ::= scope_modifier
Cond::= runtime_conditions

We designed CASE’s policy specification to be comprehensi-
ble and easy to use for intended users, namely app developers.
They can define policies to restrict untrusted modules in two sim-
ple steps: (1) identifying the modules with the class names or exe-
cutable names; (2) choosing the accessible resources and the access
conditions for the modules. For example, an app developer can de-
fine a policy that allows a third-party library in her app (i.e.,Sub =
com.example.lib.*) to send/receive SMS to/from a partic-
ular number (i.e.,Obj = SMS, Mod=Number:1234567, Op
= read & write). The policy can also require user’s presence
at the moment of the SMS access (i.e.,Cond=User_Active &
App_Foreground). This policy prevents an untrusted library,
which only needs limited SMS capability (e.g., for user registra-
tion), from stealthily sending SMS to unexpected numbers (e.g.,
a premium number) or reading SMS meant for other apps (e.g.,

a 2nd-factor authentication code). We note that, to define policies,
app developers do not need any knowledge about how the untrusted
modules work but just a high-level understanding of the modules’
expected behaviors. Developers should have this high-level under-
standing of the modules because they have chosen to use the mod-
ules in their apps. Furthermore, with the help of a simple policy
generator2, app developers would not need to understand the policy
syntax or write raw policies. Instead, the tool would assist devel-
opers via GUI to choose modules, resource types, access scope,
and conditions, and eventually create policy stubs based on devel-
opers’ selections. Therefore, we do not expect policy definition
would prevent app developers (or users), including those with little
security expertise, from making use of CASE to protect their apps.

Porting CASE to ART: We used Dalvik as the reference VM for
implementing CASE because it was the default Android runtime
when our project started. Although ART has replaced Dalvik in re-
cent Android releases, we confirmed that the Dalvik-based design
of CASE applies to ART as well and porting CASE to ART does
not involve design changes. This is because, despite the major dif-
ference introduced by the ahead-of-time compilation, the two run-
times largely share the same in-VM interfaces for class and object
management and use the same JNI bridge, which allows the dual-
layer interception, the native-safe pages, and the concealed handler
to remain effective for ART.

Alternative Usages: While it is mainly designed for app develop-
ers, CASE can be alternatively used by the IT administrators and
end users to enforce module-level security policies on apps that,
for instance, using apps containing untrusted or unwanted modules.
Although it is challenging for average users to identify app modules
and define proper policies, we believe that tech-savvy users and IT
administrators should be able to describe modules using packages
names and class names (i.e., easily retrievable and human readable)
without understanding app designs or needing developer assistance.
However, when not used by app developers, CASE cannot produce
app packages signed by the original app developer keys, which may
cause inconvenience to automatic app updates.

Memory Layout Disclosure: The effectiveness of the native-safe
pages and the concealed handler partly relies on the confidentiality
of app memory layout. There have been known channels through
which the memory layout of a process can be observed or inferred.
Our design considers and blocks these channels. For instance, cer-
tain system calls take user-space addresses as parameters, and when
receiving an inaccessible address, they return a error code rather
than triggering a page fault. By employing the dual-layer intercep-
tion, CASE prevents attackers from exploiting these system calls
to bypass guard pages that surrounding hidden pages. Similarly,
CASE blocks direct access to the /proc/self/maps files by
JNI code, preventing memory mapping disclosures.

6. ANALYSIS AND EVALUATION
We conducted a series of experiments to evaluate CASE in terms

of its completeness and robustness, compatibility with COTS apps,
and runtime overhead. Our experiments involved the following sets
of apps and test inputs:

(S1) a set of 420 apps, selected from the 50 most downloaded
apps across 26 function categories from Google Play and HiAPK (a
top alternative Android market), excluding games and apps that do

2Building this tool should only involve straightforward develop-
ment effort and is out of the scope of this paper.
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not use any sensitive permission (i.e., an indicator of low security
relevance);

(S2) a set of 20 apps randomly drawn from S1 for semi-manual,
in-depth study and tests;

(S3) a set of in-house and Android’s unit tests for stress and
coverage testing.

We first analyzed the completeness and robustness of CASE’s
enforcement (§ 6.1). We then examined CASE’s deployment cost
and compatibility by exercising our automatic app patcher against
S1 and subsequently testing the patched apps (§ 6.2). The results
show that patching CASE into legacy and COTS apps is fast, effort-
less, and free of compatibility issues. We finally measured the run-
time overhead of CASE in three settings: enforcing generic security
policies on a large number of apps in S1; enforcing app-specific
policies (i.e., manually tailored for each app) on the 20 apps in S2;
and stress testing the critical paths of CASE using S3 (§ 6.3).

The results indicate that CASE is efficient for practical use. All
experiments were conducted on an LG Nexus 5 phone running An-
droid Kitkat.

6.1 Security Analysis
For benign apps, it is safe to assume that their code follows a reg-

ular pattern. This indicates that the app code solely relies on system
calls for accessing system-managed resources, and the Dalvik VM
for Java-level cross-class interactions. We propose dual-layer inter-
ception to monitor app’s sensitive operations by intercepting APIs
at two layers, namely the system call wrappers and the interfaces
exposed by the Dalvik VM. We identified a minimum set of func-
tions that cover all cross-boundary interactions. This way, we could
effectively and completely mediate all security-critical activities on
both layers.

In addition to the comprehensive security enforcement, CASE
defends against the most powerful adversaries at app-level, who
may attempt either bypassing security checks or tampering with
the CASE enforcement mechanism itself. The adversaries are al-
lowed to deploy malicious code, either in Java or in native form, in
enforced apps alongside CASE. Figure 5 generalizes possible eva-
sions into three types. We show that CASE is designed to provide
countermeasures to all of them and achieve robustness.

First, malicious native code may attempt to directly access the
sensitive resources ( 1 ) without invoking the typical resource ac-
cessors. For example, it may perform system calls using embedded
assemblies rather than the libc wrappers; it may also locate the
VM’s internal data items in memory (e.g., class table) and manip-
ulate the raw data without calling VM APIs. Countermeasure:
CASE forbids embedded system call instructions in apps. This is
checked by the automatic patcher at app rewriting phase. For sen-
sitive VM data, we allocate data native-safe pages to hold these
data. The native-safe pages are hidden at random memory loca-
tion, and protected with guard pages to prevent memory scan. We
allow the native-safe pages to be accessible when Java threads are
running, since code compiled from high-level languages (i.e., Java)
can not directly access virtual memory. When the execution enters
native threads, we immediately lock the pages, thus denying direct

access to raw VM data.
Second, malicious code may try to bypass the function intercep-

tion by directly invoking the resource accessors ( 2 ). For example,
native code can invoke the system call wrappers or VM-level APIs
via function pointers or indirect jumps. Countermeasure: CASE
disables the default system call wrappers while native code is run-
ning. Even if malicious native code can acquire the function point-
ers to the system call wrappers, directly invoking them will cause
a page fault. Similarly, we use code native-safe pages to keep a
hidden copy of system call wrappers. Only legitimate system calls
that go through our trampolines are redirected to these code native-
safe pages. On the other hand, although the VM-level APIs are not
protected as the system call wrappers, we lock the memory pages
that hold VM internal data essential to these APIs. Any unchecked
invocation of such APIs eventually will hit the locked data native-
safe pages and fail.

Third, sophisticated malware may launch control-flow attacks
against the trampolines ( 3 ), where intercepted calls to functions
are checked for policy compliance and dispatched to the original
accessors if the check passes. For example, malware may perform
ROP-style tricks that coerce the control flow to jump to the middle
of a trampoline right after the checkpoint, continue on the affir-
mative branch, and later return to the malicious code when the re-
source access finishes. Countermeasure: CASE ensures the atom-
icity of its security checks and trampolines. For system calls, we
design the concealed handler mechanism to only expose the ad-
dress of the hidden system call wrappers if the execution arrives at
the trampolines via the first instruction and goes through the en-
tire check. For VM APIs, the data native-safe pages remain locked
during the entire execution of native code, which strictly blocks any
access to the VM’s internal data by native code.

6.2 Deployment Cost and Compatibility
The automatic app patcher was designed to minimize the efforts

and cost associated with deploying CASE in practice. It helps de-
velopers to enforce fine-grained policies and least-privilege princi-
ple among different modules in their apps without having to im-
plement the complex enforcement mechanisms by themselves. To
measure the performance of the app patcher, and more generally,
the overhead and compatibility of CASE’s rewriting approach, we
ran the patcher through the 420 apps in S1. We used a set of generic
policies that reflect some common security needs of most apps,
rather than specifically defining a policy for each app:

(P1) com.package execute (dlopen)x(Path:
/system/lib/) always

(P2) com.package.module read|write (File-
sys)x(Path:$APPHOME/module/) always

(P3) com.package.main read (Location)x(
NULL) always

(P4) com.package read|write (Internet)x(
IP:xxx.xxx.xx.xxx) always

(P5) com.package.module1 read (fieldID)x
(com.package.module2) module1==module2

On average, each app takes 6.34 seconds to be patched and the
size of the app executable increases by 65.58 KB or 4.22%. Such
costs are generally affordable given that the patching process hap-
pens only once per app install in an offline fashion and today’s mo-
bile devices are usually equipped with ample storage.

6.3 Runtime Overhead
The runtime overhead of CASE-enabled apps is the combination

of the approach-intrinsic overhead and policy-specific overhead.
The former represents the fixed cost universal to all CASE-enabled



Table 2: Unit testing results

Operation Number
of runs

Crossed
interface

Intercepted
API

Per-operation time (ms) Per-operation
overhead (%)original app CASE-enabled app overhead

Open a file 1,000 module-to-system open 0.310512 0.314719 0.004207 1.35%
Modify the value of a global
variable in another package 100,000 module-to-module setField 0.021202 0.022097 0.000895 4.22%

Query 200 contacts 500 module-to-module ioctl 38.181994 38.920963 0.738970 1.94%
Network access 10,000 module-to-system connect 0.080651 0.087197 0.006546 8.12%

Table 3: End-to-end performance tests on S2
Package name Activity Original app (ms) CASE-enabled app (ms) Overhead (ms) Overhead

1 com.jb.mms .ui.MainPreference, .ui.NotifyPreference 400.00 408.00 8.00 2.00%
.ui.ComposeMessageActivity 356.00 370.00 14.00 3.93%

2 com.facebook.orca
.auth.LoginScreenActivity,
.auth.SilentLoginActivity 978.00 1,018.00 40.00 4.09%

.threadlist.ThreadListActivity,

.creation.CreateThreadActivity 962.00 1,037.00 75.00 7.80%

3 com.fsck.k9 .activity.MessageList 312.00 318.00 6.00 1.92%

4 com.snda.inote .activity.NoteViewActivity,
.activity.NoteEditActivity 1,266.00 1,287.00 21.00 1.66%

5 com.yelp.android .ui.activities.ActivityNearby,
.ui.activities.ActivityBusinessListResults 333.33 357.00 23.67 7.10%

6 wind.android .setting.activity.MoreAppSettingctivity,
.setting.activity.SystemSettingActivity 352.00 370.00 18.00 5.11%

7 com.symantec.android.spot .ui.EulaActivity 473.00 492.00 19.00 4.02%
8 com.corewillsoft.usetool .chrome.browser.ChromeTabbedActivity 360.00 376.00 16.00 4.44%

9 com.zhangdan.safebox .activities.MainActivity 584.00 632.00 48.00 8.22%
.activities.card.AddCreditCardActivity,
io.card.payment.CardIOActivity 902.00 908.00 6.00 0.67%

10 com.tecace.cameraace com.android.camera.CaptureActivity 244.44 248.89 4.45 1.82%
com.tecace.photogram.PEffectActivity 774.00 782.00 8.00 1.03%

11 com.piriform.ccleaner
.ui.activity.CleanActivity,
.ui.activity.CleanCacheActivity 234.00 266.00 32.00 13.68%

.ui.activity.AppManagerActivity 166.00 178.00 12.00 7.23%
12 com.gemini.calendar .Month 236.25 242.50 6.25 2.65%
13 cn.ecook .MainTab, .ui.SearchUser 730.00 796.00 66.00 9.04%
14 com.hotelvp.tonight .activities.CityListActivity 260.00 280.00 20.00 7.69%

15 cn.dict.android.pro .activity.UserGuidanceActivity,
.activity.TranslationActivity 556.00 605.00 49.00 8.81%

16 com.fstop.photo .ListOfFoldersActivity 840.00 882.00 42.00 5.00%

17 com.jiubang.go.backup.ex

.recent.summaryentry.SingleInfomation-
ViewActivity, .BackupProcessActivity,
.ReportActivity

806.00 850.00 44.00 5.46%

.RestoreProcessActivity, .ReportActivity 300.00 326.00 26.00 8.67%

18 com.tvkdevelopment.nobloat .activities.BackedUpApps 412.00 414.00 2.00 0.49%
.activities.Blacklist 408.00 432.00 24.00 5.88%

19 org.mightyfrog.android.
simplenotepad .FolderView, .NoteEditor, .Checklist 366.00 382.00 16.00 4.37%

20 com.qo.android.am3
com.quickoffice.mx.FileSystemListActivity,
com.quickoffice.mx.FileListActivity,
com.quickoffice.mx.SaveFileAsActivity

390.00 434.00 44.00 11.28%

Average 14,001.02 14,691.39 690.37 4.93%



apps whereas the latter depends on the nature and complexity of
enforced security policies.

First, we measured the approach-intrinsic overhead in the same
experiment setup as the compatibility test, where the 420 patched
apps in S1 were automatically exercised with the generic policies
enforced. The average delay in cold app startup is 0.174 seconds (a
17.6% slowdown). The timed period starts from the moment when
the app launch intent is sent out to the moment when the default
activity-ready Logcat message is captured. The slowdown is a re-
sult of loading the CASE library and initializing the enforcement
mechanisms. The absolute delay is hardly noticeable in practice
and varies marginally across different apps. The increases in peak
CPU utime and peak CPU stime are 4.47% and 9.01%, respec-
tively. They represent the worst case CPU utilization increases in
user and kernel modes. The increased memory utilization, 1.19MB
on average (Uss), matches with the sizes of CASE library and the
native-safe pages. To measure CASE’s impact on battery consump-
tion, we conducted two drain tests on a fully charged battery: the
first test repeatedly ran the unpatched apps in S1 till the battery
died and the second test did the same but on the patched apps in
S1. The first test lasted 5.52h while the second test lasted 5.19h
(20 minutes 2 seconds less), indicating a 6.43% battery overhead
of CASE.

Our second experiment consists of a series of stress testing. We
created a set of unit tests (Table 2), each repeatedly carrying out
a critical operation that CASE intercepts. The unit tests contain
common security checks of different types to simulate the enforce-
ment of comprehensive security policies. Compensating the previ-
ous end-to-end overhead evaluation, these unit tests offer insights
into CASE’s worst-case overhead associated with enforcing certain
class of policies listed in P1 through P5. The results are shown
in Table 2. The average per-operation overhead is less than 3.91%,
which is unnoticeable in practice because the absolute delays are
at the microsecond scale and not accumulative. Moreover, we no-
tice that such overhead is negligible in the much longer end-to-end
operations (e.g., accessing files after obtaining the descriptor).

Third, to determine the end-to-end operation overhead of CASE,
we performed semi-manual experiments on a sufficient yet man-
ageable size of apps. For each app in S2, we exercised the selected
features of the app in order to measure the relative delays caused
by CASE’s security enforcement. The tested features were selected
based on the consideration that they should start from a user in-
put event and proceed nonstop (i.e., no further user input or asyn-
chronous wait is needed) till the end marked by certain detectable
UI changes. For instance, a testing feature of Yelp is the search
of nearby restaurants. It begins with a touch event on the search
button, then proceeds to read the GPS data and query the remote
server, and eventually displays the search result in a list view.

Fully executing such a feature serves as an end-to-end test of
CASE’s enforcement overhead. It also allows for semi-automatic
and precisely timed tests: we first identify a feature’s triggering UI
(e.g., a button) and the terminating UI (e.g., a result view); with
this input, our UI automator then carries out the feature and times
its execution in two separate runs—one on the original version and
the other one on the CASE-enabled version of the app. The relative
increase in the time spent for executing a feature quantifies CASE’s
end-to-end performance overhead. Table 3 shows the end-to-end
testing results on the apps in S2. Across all the 20 apps, CASE
incurred an average enforcement overhead of 4.93% (Table 3).

7. RELATED WORK
To mitigate threats imposed by malicious or vulnerable apps,

several solutions have been proposed to enhance Android app secu-

rity. These solutions either extend the underlying Android frame-
work or instrument the app to include inline mediation hooks.

OS-level protection: MockDroid [3] and DeepDroid [22] mock
sensitive data items when apps are not allowed to access them.
AirBag [24] provides a virtualized app runtime environment that
mediates apps’ access to system resources. [4] prevents privilege
escalation attacks by validating all inter-app communication (ICC)
against app permissions. FlaskDroid [5] and SEAndroid [19] medi-
ate component interactions for security enforcement. TaintDroid [9]
and AppFence [11] dynamically track sensitive information within
an application to detect privacy violations. ASM [10] and ASF [2]
extend Android security with programmable interfaces and multi-
layer access control. All these works introduce new app protec-
tion and security enforcement capabilities to the Android OS. In
comparison, CASE addresses a different line of threats, namely the
module-level attacks. It enables fine-grained class-level security
mediation for the first time, without modifying the OS.

App-level protection: Different Inline reference monitors (IRMs)
were proposed to control app’s access to sensitive APIs through
bytecode rewriting [7, 8, 13] or native code interposition [25]. Sim-
ilar to CASE, they do not require modifications to the Android
framework or OS, but unlike CASE, their mediation may be circum-
vented by malicious code using reflections or native code. Deep-
Droid [22] and FireDroid [17] use ptrace to monitor an app’s
behavior. However, these solutions require mobile devices to be
unlocked and rooted, which severely limits their practical deploy-
ment and arguably weakens device security. AppCage [26] cre-
ates app-level sandboxes to constrain app code. While it does not
require OS changes or root privileges, its enforcement applies to
individual apps and cannot recognize app modules.

Component-level protection: There have been some proposals
to split monolithic apps into mutually distrusting components [18,
20, 23] to administer independent security policies for these com-
ponents. AdSplit [18] isolates advertisement libraries into sepa-
rate processes and maintain UI consistency. Similarly, NativeG-
uard [20] runs JNI libraries in separate processes in isolation to
the containing app. These process-based isolations work well on
independent libraries, but they are too rigid and coarse to be ap-
plied to libraries or external code that are closely integrated with
apps. Moreover, they suffer from high IPC overheads while re-
quiring stubs to be created for each component. Another relevant
body of research, including Apex [14], CRePE [6] and Saint [15],
enables configurable and contextual security policies for regulat-
ing an app’s interaction with other apps and its access to system-
managed resources. In comparison, CASE recognizes app modules
and allows security policies to be defined and enforced at mod-
ule level—a currently missing security capability essential for de-
fending against the module-level attacks. Aurasium [25] intercepts
resource-accessing system calls via GOT hooking. CASE’s dual-
layer interception also intercepts system calls, though for a differ-
ent purpose. In addition, CASE’s interception covers the VM-level
APIs, captures inter-module crossings, and more importantly, is
protected by the native-safe pages and the concealed handler and
is robust against malicious Java and native code.

8. CONCLUSION
We have presented the design, implementation and evaluation of

CASE, a system that for the first time enables fine-grained module-
level security in Android apps. The enforcement does not require
any changes in the OS and is robust against malicious Java and
native code, thanks to the three novel core techniques: dual-layer



interception, native-safe pages, and concealed handler. We imple-
mented a prototype of CASE for Android. Our evaluation against
420 real apps shows that CASE effectively and efficiently enforces
module-level security policies, and is suitable for quick and wide
adoption to defend against the emerging module-level attacks.
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